Optics and optical instruments — Veiling glare of image-forming systems — Definitions and methods of measurement

Optique et instruments d’optique — Lumière parasite diffuse des systèmes d’imagerie — Définitions et méthodes de mesure
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 9358 was prepared by Technical Committee ISO/TC 172, Optics and optical instruments, Subcommittee SC 1, Fundamental standards.
Introduction

The image plane of an optical or electrooptical imaging system normally receives not only the image forming radiation, but also stray (unwanted) radiation which can reduce image contrast.

This unwanted radiation is referred to as “veiling glare”. In lens systems it usually arises from one or more of the following causes:

a) internal multiple reflections between the lens surfaces;
b) scatter from the surfaces of the lens elements due to scratches and other imperfections in the polish, dirt and dust, fingerprints, grease, poor antireflection coatings and faulty reflective coatings on mirrors;
c) bulk scatter from the interior of the glass and from bubbles and striae;
d) scatter from optical cements;
e) scatter and reflections from ground edges of the lens elements, from internal lens mounts and from the internal surfaces of the lens barrel;
f) reflections from the surfaces of diaphragms and shutter blades;
g) fluorescence of the glass optical cements.

The veiling glare of lens on its own can be considerably different from the veiling glare of a lens system and camera body combination. In the latter case, reflection of part of the image-forming radiation from the photosensitive material in combination with further reflections and scatter from the lens system and camera body contribute significantly to the veiling glare.

In electrooptical devices, veiling glare arises from similar causes. For instance, in an image intensifier tube glare can arise from:

a) radiation transmitted through the photocathode being scattered and reflected by internal structures back onto the photocathode;
b) radiation emitted from the phosphor going back to the photocathode;
c) in tubes with microchannel plates some electrons incident on the input face can be back-scattered from this face before returning to it with the primary electrons.

For the purposes of this International Standard, it is important to differentiate between veiling glare which originates from radiation incident on the entrance pupil or input face of an optical or electrooptical system and other factors which may cause a reduction in contrast and which may therefore influence a measurement of veiling glare.
Examples of these are:

a) radiation entering a system through leaks in the casing or body of the system;

b) radiation from internal sources in a system such as LEDs;

c) reflection of ambient radiation from projection screens or CRT displays;

d) dark current in electrooptical devices;

e) fog in photographic emulsions.

There are two principle methods of measuring veiling glare, namely the integral (or black patch) and the analytical (or glare spread function).

In the integral method, the target object is a small black area surrounded by an extended uniform source. The veiling glare index (VGI) is specified as the ratio of the irradiance in the image of the black area to the irradiance in the image of the extended source. For definitions of this and other radiometric and photometric terms, see ISO 31-6.

In the analytical method, the object is a small source with a dark surround. The distribution of irradiance in the image plane normalised in a particular way, is defined as the glare spread function (GSF).

Each of these two methods of measuring veiling glare has its own particular areas of usefulness. In general, the integral method is applicable to systems where the scene will normally be of roughly uniform radiance (e.g. a landscape photographed in overcast conditions or with the sun behind the camera) whilst the analytical method is relevant to applications where intense isolated sources may be present in the scene (e.g. a star sensor system on a space vehicle, designed to operate with the sun just outside its field of view).

The analytical method has the further advantage that in principle it can be used to calculate glare levels in a specified real situation and in fact the VGI can be predicted from the GSF (e.g. by convolution and integration of the GSF with the radiance distribution in the scene) whilst the reverse is not possible.
Optics and optical instruments — Veiling glare of image-forming systems — Definitions and methods of measurement

1 Scope

This International Standard adopts both the veiling glare index (VGI) and the glare spread function (GSF) as measures of the veiling glare characteristics of optical and electrooptical imaging systems. Laboratory measurement techniques are described in general terms and recommendations are made regarding the performance of the main subunits of the equipment.

The measurement techniques described in this International Standard are chiefly valid for the visual spectral range. For adjacent spectral ranges, modifications of these techniques will possibly be necessary.

Standard methods of specifying conditions of test and of expressing the results are given, with to assist in the intercomparison of VGI figures, standard test conditions are specified.

This International Standard also gives guidelines for the operation of measuring equipment such that accurate results can be achieved.

Results of veiling glare index measurements made using equipment which does not conform in detail to the configurations described in this International Standard are accepted as valid, provided the method of measurement is substantially similar (i.e. measures the ratio of the radiance in the image of the black area to the radiance in a surrounding bright field) and provided the test results can be correlated to the required accuracy with results obtained on equipment which conforms strictly to this International Standard.

2 Definitions

For the purposes of this International Standard, the following definitions apply.

2.1 veiling glare: Unwanted irradiation in the image plane of an optical or electrooptical system, caused by a proportion of the radiation which enters the system through its normal entrance aperture. The radiation may be from inside or outside the field of view of the system.

2.2 veiling glare index (VGI): Ratio of the irradiance at the centre of the image of a small, circular, perfectly black area superimposed on an extended field of uniform irradiance, to the irradiance at the same point of the image plane when the black area is removed. VGI is expressed as a percentage unless otherwise specified.

NOTE 1 The size of the black area and of the surrounding field, as well as the proportion of the black area used for measurement, shall be specified.

2.3 veiling glare index — band target (VGIB): Ratio of the irradiance at a specified position along the centrel ine of the image of a narrow, perfectly black band superimposed on an extended field of uniform irradiance, to the irradiance at the same point of the image plane when the black band is removed. VGIB is expressed as a percentage unless otherwise specified.

NOTE 2 The black band, or strip, shall extend across a diagonal of the image format. Its width and length, as well as the size of the surrounding field and the proportion of the black area used for measurement shall be specified.

2.4 glare spread function (GSF): Irradiance distribution in the image plane, produced by a small source object, normalised to unit total flux in the on-axis image of the small source.
ISO 9358:1994(E)

i.e. \[ GSF = \frac{\text{irradiance due to veiling glare}}{\text{total flux in image of source}} \]

GSF is expressed in units of reciprocal square metres (m\(^{-2}\)).

The GSF only has meaning outside the primary image of the source.

2.5 glare spread function — radiant intensity (GSFR): Radiant intensity in image space of an equivalent veiling glare source at the exit pupil of the test system which gives rise to the measured veiling glare irradiance in the image plane. This intensity is normalised to unit total flux in the on-axis image of the actual illuminating source.

\[ \text{i.e. } \frac{\text{radiant intensity of equivalent veiling glare source}}{\text{total flux in image of actual source}} \]

GSFR is expressed in units of reciprocal steradians (sr\(^{-1}\)).

GSFR is normally used in preference to GSF when dealing with afocal systems. GSFR only has meaning outside the primary image of the source.

3 Classification of test specimen

The arrangement of test equipment used in measuring veiling glare will depend on the test specimen and shall be representative of the conditions under which it will normally be used.

Table 1 illustrates how these conditions are classified for the purpose of this International Standard and gives examples of classifications for typical specimens.

The classification given in Table 1 is based on object distance and area and image distance and as shown in Table 2.

4 Measurement methods

4.1 Veiling glare Index

4.1.1 General technique

A typical arrangement for measuring the VGI of a lens is illustrated diagrammatically in figure 1.

The extended bright field (subtending 2\pi sr in this case) is produced by illuminating an integrating sphere with several lamps through suitable portholes.

The “black area” is an absorbing cavity in the wall of the integrating sphere which can be interchanged with a section having the same reflecting characteristics as the remainder of the internal surface of the integrating sphere. The lens under test is placed with its front end protruding into an exit port which is diametrically opposite the “black area” in the integrating sphere. The front of the lens should protrude into the sphere at least as far as the line of the integrating surface.

The irradiance in the image of the black area is measured with a suitable photoelectric detector in front of which is a small aperture (with, if necessary a small integrating sphere, or condenser lens system, and/or a diffuser between the two).

### Table 1

<table>
<thead>
<tr>
<th>Object distance</th>
<th>Image distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinity or greater than 10 ( \times ) focal length</td>
<td>Finite</td>
</tr>
<tr>
<td>Finite but inaccessible</td>
<td>TV systems, cameras, ciné cameras</td>
</tr>
<tr>
<td>Telescopes, also image intensifier telescopes</td>
<td>Photographic lenses</td>
</tr>
<tr>
<td>Projection lenses, magnifiers, microscopes</td>
<td>TV microscopes</td>
</tr>
<tr>
<td>(Microscopes)</td>
<td>Image converter tubes with glass discs (TV microscopes)</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Object space</th>
<th>Image space</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The object is at infinity or nominally at infinity. In this case, radiation from the total semi-infinite space (unlimited object area) falls on the test specimen. The object distance and area are finite. The radiating source corresponds, with exceptions, only to the maximum object area used (limited object area). The object distance and area are finite; the object is not, however, directly accessible as it is, for example, covered by a glass disc.</td>
</tr>
<tr>
<td>B</td>
<td>The image plane is at infinity or nominally at infinity. The image plane is at a finite distance and is of finite area. The image plane is at a finite distance but is inaccessible because, for example, it is covered by a glass disc.</td>
</tr>
<tr>
<td>a</td>
<td>The object is at infinity or nominally at infinity. The object distance and area are finite. The radiating source corresponds, with exceptions, only to the maximum object area used (limited object area).</td>
</tr>
<tr>
<td>b</td>
<td>The object distance and area are finite; the object is not, however, directly accessible as it is, for example, covered by a glass disc.</td>
</tr>
<tr>
<td>c</td>
<td>The object distance and area are finite; the object is not, however, directly accessible as it is, for example, covered by a glass disc.</td>
</tr>
</tbody>
</table>

The ratio of the detector signal in the above situation to the detector signal when the black area is replaced by a section of normal integrating sphere surface gives the veiling glare index.

For the situation where the black area cannot be replaced with a normal section of the surface, the second measurement can be obtained by moving the aperture and detector to a position clear of, but adjacent to the image of the black area.

The exact form taken by the measuring equipment will depend on the classification of the test specimen (see clause 3). For measurements of veiling glare using a black area in the form of a band across a diagonal of the image format (i.e. VGIB), suitable adaptations of the general technique are used. An important consideration in this case is that the black band or strip needs to be in focus over its whole length and will normally therefore be on a flat surface. Suitable configurations for the extended source and for the detector system are discussed in the following subclause.

4.1.2 Extended source and black area

4.1.2.1 Object at infinity (Classification A)

For this case, the extended source ideally subtends 2π sr. It is obviously impossible to have such a source and black area actually at infinity and it is therefore acceptable that the equipment simulates a situation where the black area and bright surround are at a sufficiently great object distance to give a measurement of VGI which is the same as that which would result if the distances were infinite. For the purposes of this International Standard, it is assumed that the object distance shall be greater than ten times the focal length of a lens tested in its own, or of the objective, if the test piece is an electrooptical system (such as a night vision sight) or afocal system. When a lens is tested in conjunction with the remainder of the system it forms part of (e.g. a lens tested with a camera body), a further stipulation is made that the object distance is also greater than the minimum focusing distance of the system.

Several different arrangements of equipment can be used for making measurements under these conditions and four of these are described in 4.1.2.1.1 to 4.1.2.1.4. Specifications for the performance of each part of a test system will be found in clause 5.

4.1.2.1.1 Single integrating sphere method

For lenses of relatively short focal length, the single integrating sphere arrangement illustrated in figure 1 and described briefly earlier in this clause may be used. The equipment can be used for testing optical systems with the black area in different parts of the field of view of the system. To do this, provision shall be made for interchanging sections of the sphere wall by the absorbing cavity, at the appropriate field angles.

4.1.2.1.2 Two hemisphere method

Where the object distance required are so large that the use of a single integrating sphere would be inappropriate, the arrangement illustrated in figure 2 may be used. This method employs a uniformly irradiated hemisphere close to the test specimen to provide most of the 2π sr of radiation, with a second hemisphere at the required object distance containing the black area (absorbing cavity) and providing the remaining part of the 2π sr extended source. The second hemisphere is seen through an aperture in the first hemisphere, whose diameter shall be such that it does not vignette the aperture of the test specimen, as far as imaging of the black area is concerned, and at the same time limits the object field to something less than the area subtended by the second hemisphere.

For off-axis measurements, the first hemisphere and the test specimen shall be tiltable and the aperture in this hemisphere shall be movable.

The effective radiances of the hemispheres shall be identical.
4.1.2.1.3 Integrating sphere and collimator method

When long object distances are required, an alternative to the two hemisphere method is to use a single integrating sphere with a collimator, as illustrated in figure 3. For off-axis measurements, the test specimen is tilted about the centre of its entrance pupil.

Great care is required in any technique using auxiliary optics, such as a collimator, to ensure that they do not themselves introduce significant levels of veiling glare which would affect the accuracy of measurements (see clause 5 for recommendations regarding collimators).

4.1.2.1.4 Irradiated rectangular box method

A rectangular box integrating cavity may be used instead of a single integrating sphere, provided its design is such that it meets the radiance specification in clause 5.
NOTE — The infinite object distance is obtained using a second hemisphere.

**Figure 2** — Veiling glare measurement with unlimited object field and infinite object distance

NOTE — The image field is off axis.

**Figure 3** — Veiling glare measurement with unlimited object field using an auxiliary lens
Ja, ik bestel

__ ex. ISO 9358:1994 en Optics and optical instruments - Veiling glare of image forming systems - Definitions and methods of measurement

€ 73.12

Wilt u deze norm in PDF-formaat? Deze bestelt u eenvoudig via www.nen.nl/normshop

Gratis e-mailnieuwsbrieven
Wilt u op de hoogte blijven van de laatste ontwikkelingen op het gebied van normen, normalisatie en regelgeving? Neem dan een gratis abonnement op een van onze e-mailnieuwsbrieven, www.nen.nl/nieuwsbrieven

Gegevens
Bedrijf / Instelling
T.a.v. O M O V
E-mail
Klantnummer NEN
Uw ordernummer BTW nummer
Postbus / Adres
Postcode Plaats
Telefoon Fax
Factuuradres (indien dit afwijkt van bovenstaand adres)
Postbus / Adres
Postcode Plaats
Datum Handtekening

Normalisatie: de wereld op één lijn.

Retourneren
Fax: (015) 2 690 271
E-mail: klantenservice@nen.nl
Post: NEN Standards Products & Services, t.a.v. afdeling Klantenservice Antwoordnummer 10214, 2600 WB Delft (geen postzegel nodig).

Voorwaarden
• De prijzen zijn geldig tot 31 december 2016, tenzij anders aangegeven.
• Alle prijzen zijn excl. btw, verzend- en handelingskosten en onder voorbehoud bij o.m. ISO- en IEC-normen.
• Bestelt u via de normshop een pdf, dan betaalt u geen handeling en verzendkosten.
• Meer informatie: telefoon (015) 2 690 391, dagelijks van 8.30 tot 17.00 uur.
• Wijzigingen en typefouten in teksten en prijsinformatie voorbehouden.
• U kunt onze algemene voorwaarden terugvinden op: www.nen.nl/leveringsvoorwaarden.