INTERNATIONAL STANDARD

IEC 60227-1
Edition 3.0 2007-10

Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V –
Part 1: General requirements

Conducteurs et câbles isolés au polychlorure de vinyle, de tension nominale au plus égale à 450/750 V –
Partie 1: Exigences générales
Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 1: General requirements

Conducteurs et câbles isolés au polychlorure de vinyle, de tension nominale au plus égale à 450/750 V – Partie 1: Exigences générales
CONTENTS

FOREWORD... 4

1 General ... 6
 1.1 Scope ... 6
 1.2 Normative references .. 6

2 Definitions ... 7
 2.1 Definitions relating to insulating and sheathing materials 7
 2.1.1 Polyvinyl chloride compound (PVC) .. 7
 2.1.2 Type of compound ... 7
 2.2 Definitions relating to the tests .. 7
 2.2.1 Type tests (symbol T) .. 7
 2.2.2 Sample tests (symbol S) .. 7
 2.3 Rated voltage .. 7

3 Marking ... 8
 3.1 Indication of origin and cable identification ... 8
 3.1.1 Continuity of marks .. 8
 3.2 Durability ... 8
 3.3 Legibility ... 8

4 Core identification ... 9
 4.1 Core identification by colours .. 9
 4.1.1 General requirements .. 9
 4.1.2 Colour scheme ... 9
 4.1.3 Colour combination green-and-yellow ... 9
 4.2 Core identification by numbers ... 9
 4.2.1 General requirements .. 9
 4.2.2 Preferred arrangement of marking ... 10
 4.2.3 Durability .. 10

5 General requirements for the construction of cables .. 10
 5.1 Conductors .. 10
 5.1.1 Material ... 10
 5.1.2 Construction ... 10
 5.1.3 Check on construction ... 11
 5.1.4 Electrical resistance .. 11
 5.2 Insulation ... 11
 5.2.1 Material ... 11
 5.2.2 Application to the conductor .. 11
 5.2.3 Thickness .. 11
 5.2.4 Mechanical properties before and after ageing ... 11
 5.3 Filler ... 13
 5.3.1 Material ... 13
 5.3.2 Application .. 14
 5.4 Extruded inner covering .. 14
 5.4.1 Material ... 14
 5.4.2 Application .. 14
 5.4.3 Thickness .. 14
 5.5 Sheath ... 14
 5.5.1 Material ... 14
5.5.2 Application ... 14
5.5.3 Thickness .. 15
5.5.4 Mechanical properties before and after ageing ... 15
5.6 Tests on completed cables .. 17
 5.6.1 Electrical properties ... 17
 5.6.2 Overall dimensions .. 18
 5.6.3 Mechanical strength of flexible cables ... 19
 5.6.4 Flame retardance .. 19
6 Guide to use of the cables ... 19

Annex A (normative) Code designation ... 20

Table 1 – Requirements for the non-electrical tests for polyvinyl chloride (PVC) insulation .. 12
Table 2 – Requirements for the non-electrical test for polyvinyl chloride (PVC) sheaths .. 16
Table 3 – Requirements for electrical tests for PVC insulated cables 18
INTERNATIONAL ELECTROTECHNICAL COMMISSION

POLYVINYL CHLORIDE INSULATED CABLES
OF RATED VOLTAGES UP TO AND
INCLUDING 450/750 V –

Part 1: General requirements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60227-1 has been prepared by IEC technical committee 20: Electric cables.

The text of this standard is based on the second edition, its amendments 1 and 2, and the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/903/FDIS</td>
<td>20/910/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
POLYVINYL CHLORIDE INSULATED CABLES
OF RATED VOLTAGES UP TO AND
INCLUDING 450/750 V –

Part 1: General requirements

1 General

1.1 Scope

This part of International Standard IEC 60227 applies to rigid and flexible cables with insulation, and sheath if any, based on polyvinyl chloride, of rated voltages U_r/U up to and including 450/750 V used in power installations of nominal voltage not exceeding 450/750 V a.c.

NOTE For some types of flexible cables the term cord is used.

The particular types of cables are specified in IEC 60227-3, IEC 60227-4, etc. The code designations of these types of cables are given in Annex A.

The test methods specified in Parts 1, 3, 4, etc. are given in IEC 60227-2, IEC 60332-1-2 and in the relevant parts of IEC 60811.

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60173, Colours of the cores of flexible cables and cords

IEC 60227-2, Polyvinyl chloride insulated cables of rated voltage up to and including 450/750 V – Part 2: Test methods

IEC 60227-3, Polyvinyl chloride insulated cables of rated voltage up to and including 450/750 V – Part 3: Non-sheathed cables for fixed wiring

IEC 60227-4, Polyvinyl chloride insulated cables of rated voltage up to and including 450/750 V – Part 4: Sheathed cables for fixed wiring

IEC 60227-5, Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 5: Flexible cables (cords)

IEC 60228, Conductors of insulated cables

IEC 60332-1-2, Tests on electric and optical fibre cables under fire conditions – Part 1-2: Test for vertical flame propagation for a single insulated wire or cable – Procedure for 1 kW pre-mixed flame

IEC 60811-1-1, Common test methods for insulating and sheathing materials of electric cables and optical cables – Part 1: Methods for general application – Measuring of thickness and overall dimensions – Tests for determining the mechanical properties
Definitions

For the purpose of this standard the following definitions shall apply.

2.1 Definitions relating to insulating and sheathing materials

2.1.1 Polyvinyl chloride compound (PVC)
Combination of materials suitably selected, proportioned and treated, of which the characteristic constituent is the plastomer polyvinyl chloride or one of its copolymers. The same term also designates compounds containing both polyvinyl chloride and certain of its polymers.

2.1.2 Type of compound
The category in which a compound is placed according to its properties, as determined by specific tests. The type designation is not directly related to the composition of the compound.

2.2 Definitions relating to the tests

2.2.1 Type tests (symbol T)
Tests required to be made before supplying a type of cable covered by this standard on a general commercial basis in order to demonstrate satisfactory performance characteristics to meet the intended application. These tests are of such a nature that, after they have been made, they need not be repeated unless changes are made in the cable materials or design which might change the performance characteristics.

2.2.2 Sample tests (symbol S)
Tests made on samples of completed cable or components taken from a completed cable, adequate to verify that the finished product meets the design specifications.

2.3 Rated voltage
The rated voltage of a cable is the reference voltage for which the cable is designed and which serves to define the electrical tests.

1 In preparation.
ALTIJD DE ACTUELE NORM IN UW BEZIT HEBBEN?

Nooit meer zoeken in de systemen en uzelf de vraag stellen: ‘Is IEC 60227-1:2007 en de laatste versie?’

Via het digitale platform NEN Connect heeft u altijd toegang tot de meest actuele versie van deze norm. Vervallen versies blijven ook beschikbaar. U en uw collega’s kunnen de norm via NEN Connect makkelijk raadplagen, online en offline.

Kies voor slimmer werken en bekijk onze mogelijkheden op www.nenconnect.nl.

Heeft u vragen?
Onze Klantenservice is bereikbaar maandag tot en met vrijdag, van 8.30 tot 17.00 uur.

Telefoon: 015 2 690 391
E-mail: klantenservice@nen.nl