TECHNICAL SPECIFICATION

Nanomanufacturing – Key control characteristics –
Part 6-4: Graphene – Surface conductance measurement using resonant cavity
TECHNICAL SPECIFICATION

Nanomanufacturing – Key control characteristics – Part 6-4: Graphene – Surface conductance measurement using resonant cavity
CONTENTS

FOREWORD ... 3
INTRODUCTION ... 5
1 Scope .. 6
2 Normative references ... 6
3 Terms and definitions .. 6
 3.1 Graphene layers ... 6
 3.2 Measurement terminology ... 8
4 Microwave cavity test fixture .. 9
5 Test specimen ... 10
6 Measurement procedure .. 10
 6.1 Apparatus ... 10
 6.2 Calibration .. 11
 6.3 Measurements .. 11
 6.3.1 General ... 11
 6.3.2 Empty cavity .. 11
 6.3.3 Specimen ... 11
 6.3.4 Repeated procedure ... 12
 6.3.5 Substrate ... 12
7 Calculations of surface conductance .. 12
8 Report ... 12
9 Accuracy consideration .. 13
Annex A (informative) Case study of surface conductance measurement of single-layer and few-layer graphene .. 14
 A.1 General ... 14
 A.2 Cavity perturbation procedure .. 14
 A.3 Experimental procedure .. 15
 A.4 Results ... 15
 A.5 Surface conductance of single-layer graphene and few-layer graphene 16
 A.6 Summary .. 17
Bibliography ... 18

Figure 1 – Microwave cavity test fixture ... 10
Figure A.1 – S_{21} magnitude of the resonant peak TE_{103} as a function of frequency at several specimen insertions (h_x) ... 16
Figure A.2 – Plots of 1/Q_x – 1/Q_0 as a function of the normalized specimen area (w*h_x) 16
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publications”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62607-6-4, which is a Technical Specification, has been prepared by IEC technical committee 113: Nanotechnology for electrotechnical products and systems.
The text of this Technical Specification is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>113/295/DTS</td>
<td>113/324/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62607 series, published under the general title *Nanomanufacturing – Key control characteristics*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- transformed into an International Standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The ‘colour inside’ logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The microwave resonant cavity test method for surface conductance is non-contact, fast, sensitive and accurate. It is well suited for standards, research and development (R&D), and for quality control in the manufacturing of two-dimensional (2D) nano-carbon materials. These sheet-like or flake-like carbon forms can be assembled into atomically-thin monolayer or multilayer graphene materials, which can be stacked, folded, crumpled or pillared into a variety of nano-carbon architectures with the lateral dimension limited to a few tenths of a nanometre. Many of these materials are new and exhibit extraordinary physical and electrical properties such as optical transparency, anisotropic heat diffusivity and charge transport that are of significant interest to science, technology and commercial applications [1, 2].

Depending on particular morphologies, density of states and structural perfection, the surface conductance of these materials may vary from 1 S to about 10^{-4} S. Conventional direct current (DC) surface conductance measurement techniques require a complex test vehicle and interconnections for making electrical contacts, which affect and alter the measurement, making it difficult to decouple the intrinsic properties of the material.

In comparison, the resonant cavity measurement method is fast and non-contact. Thus, it is well suited for use in R&D and manufacturing environments where the surface conductance is a critical functional parameter. Moreover, it can be employed to measure electrical characteristics of other nano-size structures.

1 Numbers in square brackets refer to the Bibliography
1 Scope

This part of IEC 62607 establishes a method for determining the surface conductance of two-dimensional (2D) single-layer or multi-layer atomically thin nano-carbon graphene structures. These are synthesized by chemical vapour deposition (CVD), epitaxial growth on silicon carbide (SiC), obtained from reduced graphene oxide (rGO) or mechanically exfoliated from graphite [3]. The measurements are made in an air filled standard R100 rectangular waveguide configuration, at one of the resonant frequency modes, typically at 7 GHz [4].

Surface conductance measurement by resonant cavity involves monitoring the resonant frequency shift and change in the quality factor before and after insertion of the specimen into the cavity in a quantitative correlation with the specimen surface area. This measurement does not explicitly depend on the thickness of the nano-carbon layer. The thickness of the specimen does not need to be known, but it is assumed that the lateral dimension is uniform over the specimen area.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60153-2, Hollow metallic waveguides – Part 2: Relevant specifications for ordinary rectangular waveguides

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60153-2 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 Graphene layers

3.1.1 graphene single-layer graphene 1LG

single layer of carbon atoms with sp\(^2\)-electronic hybridization bound to three neighbours in a honeycomb structure

Note 1 to entry: It is an important building block of many carbon nano-objects.
3.1.2
bilayer graphene
2LG
two-dimensional material consisting of two well-defined stacked graphene layers

Note 1 to entry: If the stacking registry is known it can be specified separately, for example as "Bernal stacked bilayer graphene".

3.1.3
trilayer graphene
3LG
two-dimensional material consisting of three well-defined stacked graphene layers

Note 1 to entry: If the stacking registry is known it can be specified separately, for example as "Bernal stacked trilayer graphene" or "twisted trilayer graphene".

3.1.4
few-layer graphene
FLG
two-dimensional material consisting of three to ten well-defined stacked graphene layers

3.1.5
nanoplate
nano-object with one external dimension in the nanoscale and the other two external dimensions significantly larger

3.1.6
nanosheet
nanoplate with extended lateral dimensions

3.1.7
graphene oxide
GO
chemically modified graphene prepared by oxidation and exfoliation of graphite that is accompanied by extensive oxidative modification of the basal plane

Note 1 to entry: Graphene oxide is a single material with a high oxygen content, typically characterized by C/O atomic ratios less than 3.0 and typically closer to 2.0.

3.1.8
reduced graphene oxide
rGO
graphene oxide that has been processed to reduce its oxygen content.

Note 1 to entry: This can be produced by chemical, thermal, microwave, photo-chemical, photo-thermal or microbial/bacterial methods or by exfoliating reduced graphite oxide.

Note 2 to entry: If graphene oxide was fully reduced then graphene would be the product, however in practice some oxygen containing functional groups will remain and not all sp³ bonds will return back to sp² configuration. Different reducing agents will lead to different carbon to oxygen ratios and different chemical compositions in reduced graphene oxide.

Bestelformulier

Stuur naar:

NEN Standards Products & Services
t.a.v. afdeling Klantenservice
Antwoordnummer 10214
2600 WB Delft

Ja, ik bestel

__ ex. IEC/TS 62607-6-4:2016 en Nanomanufacturing - Key control characteristics - Part 6-4: Graphene - Surface conductance measurement using resonant cavity

€ 83.09

Wilt u deze norm in PDF-formaat? Deze bestelt u eenvoudig via www.nen.nl/normshop

Gratis e-mailnieuwsbrieven

Wilt u op de hoogte blijven van de laatste ontwikkelingen op het gebied van normen, normalisatie en regelgeving? Neem dan een gratis abonnement op een van onze e-mailnieuwsbrieven. www.nen.nl/nieuwsbrieven

Gegevens

Bedrijf / Instelling

T.a.v. O M O V

E-mail

Klantnummer NEN

Uw ordernummer BTW nummer

Postbus / Adres

Postcode Plaats

Telefoon Fax

Factuuradres (indien dit afwijkt van bovenstaand adres)

Postbus / Adres

Postcode Plaats

Datum Handtekening

Normalisatie: de wereld op één lijn.