INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fuel cell technologies –
Part 3-400: Stationary fuel cell power systems – Small stationary fuel cell power system with combined heat and power output

Technologies des piles à combustible –
Partie 3-400: Systèmes à piles à combustible stationnaires – Petits systèmes à piles à combustible stationnaires avec chaleur et puissance en sortie combinées
Voorbeeld

and withdrawn publications. It also gives information on projects, replaced variety of criteria (reference number, text, technical

The advanced search enables to find IEC publications by a

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About the IEC

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, technical committee,…). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre csc@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,…). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Dit document is een voorbeeld van NEN / This document is a preview by NEN
Fuel cell technologies – Part 3-400: Stationary fuel cell power systems – Small stationary fuel cell power systems with combined heat and power output

Technologies des piles à combustible – Partie 3-400: Systèmes à piles à combustible stationnaires – Petits systèmes à combustible avec chaleur et puissance en sortie combinée

® Registered trademark of the International Electrotechnical Commission

This document is a preview by NEN

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.
CONTENTS

FOREWORD ... 6
1 Scope ... 8
2 Normative references ... 11
3 Terms, definitions and symbols .. 13
 3.1 Terms and definitions ... 13
 3.2 Symbols ... 19
4 Appliance classification ... 21
 4.1 Gases and gas categories .. 21
 4.2 Mode of air supply and evacuation of combustion products 21
 4.3 Maximum water side operating pressure ... 22
 4.4 Expansion system .. 22
 4.5 Output power characteristic ... 22
5 Safety requirements and protective measures ... 22
 5.1 General safety strategy ... 22
 5.2 Construction requirements for safety ... 23
 5.2.1 General ... 23
 5.2.2 Use and servicing ... 23
 5.2.3 Connections to the supply systems .. 25
 5.2.4 Soundness .. 27
 5.2.5 Materials .. 29
 5.2.6 Electrical safety .. 29
 5.2.7 Subsystems and safety related control functions 30
 5.3 Operational requirements for safety ... 39
 5.3.1 General requirements .. 39
 5.3.2 Soundness .. 40
 5.3.3 Safety of operation (temperature/limit gas) .. 46
 5.3.4 Start/release and adjusting, control and safety devices (if applicable) 54
 5.3.5 Resistance of the materials to pressure ... 57
 5.3.6 EMC .. 57
 5.3.7 Outdoor or semi-outdoor for Type A small fuel cell CHP appliance 57
 5.4 Safety requirements test methods ... 58
 5.4.1 General test conditions .. 58
 5.4.2 Soundness .. 63
 5.4.3 Safety of operation .. 68
 5.4.4 Start/release and adjusting, control and safety devices 87
 5.4.5 Resistance of the materials to pressure ... 90
 5.4.6 EMC .. 90
 5.4.7 Outdoor or semi-outdoor small fuel cell CHP appliances 90
6 Functional (normal operating) performance ... 95
 6.1 Performance parameters and requirements ... 95
 6.1.1 Efficiency .. 95
 6.1.2 Heat input and heat and electrical output ... 95
 6.1.3 Operation ... 96
 6.1.4 Combustion and NOX emissions ... 96
 6.1.5 EMC .. 97
 6.2 Performance test methods ... 97
6.2.1 Efficiency ... 97
6.2.2 Heat input and heat electrical output 103
6.2.3 Operation ... 104
6.2.4 Combustion and NOX emissions 104
6.2.5 EMC ... 106
7 Marking, installation and operating instructions 106
7.1 Marking of the small fuel cell CHP appliance 106
7.1.1 Data plate .. 106
7.1.2 Supplementary markings ... 107
7.1.3 Packaging ... 107
7.1.4 Warnings on the small fuel cell CHP appliance and the packaging 107
7.1.5 Other information ... 107
7.2 Installation instructions .. 107
7.2.1 General ... 107
7.2.2 Technical instructions .. 110
7.3 Operating instructions (i.e. users instructions) 113
7.4 Conversion instructions (if applicable) 113
7.5 Presentation ... 113

Annex A (informative) Significant hazards, hazardous situations and events dealt with in this standard .. 114
Annex B (informative) Requirements specific for Europe 116
Annex C (informative) Requirements specific for stationary fuel cell power system in Japan .. 149
Annex D (informative) Requirements specific for the USA 171
Annex E (informative) Composition of the supply gas circuit 175
Annex F (informative) Classification of gas appliances according to the method of supplying air and evacuation of the combustion products (types) 176
Annex G (informative) Sampling of flue gas combustion products 187
Annex H (informative) Practical method of calibrating the test rig to enable the heat loss Qloss to be determined 189
Annex I (informative) Test rig for the measurement of the stand-by heat losses 190

Bibliography ... 192

Figure 1 – Configuration with and without integrated supplementary heat generator 11
Figure 2 – Illustration of Table 3: Surrounding of the combustion products circuit by the combustion air circuit .. 44
Figure 3 – Test rig for Type C1 appliances, equipped with horizontal wind protection device at a vertical wall .. 73
Figure 4 – Test rig for Type C1 small fuel cell CHP appliances for installation in buildings with tilted roof .. 74
Figure 5 – Test rig for Type C3 and Type C9 small fuel cell CHP appliances for installation in flat roofed buildings 75
Figure 6 – Test rig for Type C3 and Type C9 small fuel cell CHP appliances for installation in buildings with tilted roof 76
Figure 7 – Wind test setup for indoor small fuel cell CHP appliances 80
Figure 8 – Water shower test setup for outdoor small fuel cell CHP appliance 91
Figure 9 – Wind test setup for outdoor small fuel cell CHP appliance 93
Figure 10 – Energy/power inputs and outputs relevant for overall energy efficiency 95
Figure 11 – Test rig for efficiency measurement of small fuel cell CHP appliances, with or without supplementary heat generator, connected to a central heating system or a heat storage system ... 99

Figure 12 – Test rig for efficiency measurement of small fuel cell CHP appliances, without supplementary heat generator, connected to a domestic hot water storage only .. 100

Figure B.1 – Test rig for thermostats: shortcut circulation ... 131

Figure B.2 – Test rig for thermostats with heat exchanger ... 132

Figure B.3 – Test rig for the determination of water losses ... 136

Figure C.1 – Configuration for stationary fuel cell power system ... 150

Figure C.2 – Test rig for measuring the insulation resistance ... 158

Figure C.3 – Example of combustion exhaust gas collectors and collection locations ... 166

Figure E.1 – Automatic gas shut-off valves in the supply gas circuit for small fuel cell CHP appliances .. 175

Figure F.1 – Types of small fuel cell CHP appliance with its key duct elements ... 176

Figure F.2 – Type B2 ... 181

Figure F.3 – Type B3 ... 181

Figure F.4 – Type B5 ... 182

Figure F.5 – Type C1 ... 183

Figure F.6 – Type C3 ... 183

Figure F.7 – Type C4 ... 184

Figure F.8 – Type C5 ... 184

Figure F.9 – Type C6 ... 185

Figure F.10 – Type C8 ... 185

Figure F.11 – Type C9 ... 186

Figure G.1 – Example of a sampling probe for the measurement of the products of combustion ... 187

Figure G.2 – Example of the location of the probe for an appliance with circular coaxial ducts ... 188

Figure I.1 – Test rig ... 190

Table 1 – Symbols and their meanings .. 19

Table 2 – Composition of the supply gas circuit according on the valve classification of ISO 23551-1 .. 31

Table 3 – Maximum admissible leakage rates ... 43

Table 4 – Allowable surface temperatures rises .. 46

Table 5 – Uncertainty of measurement .. 63

Table 6 – Soundness tests of the internal cooling circuits .. 68

Table 7 – $\phi_{\text{ex,th}}(\text{CO}_2)$ volume fraction of the theoretical dry air-free combustion products, in percent 84

Table 8 – Emission classes for NOX .. 96

Table A.1 – Hazardous situations and events .. 114

Table B.1 – Mechanical properties and chemical compositions of carbon and stainless steels .. 120

Table B.2 – Minimum requirements for cast iron ... 120

Table B.3 – Parts in aluminium and aluminium alloys .. 121

Table B.4 – Parts in copper or copper alloys ... 121
Table B.5 – Minimum thicknesses for rolled parts ... 121
Table B.6 – Nominal minimum thicknesses of small fuel cell CHP appliance sections 121
Table B.7 – Weld joints and welding processes... 122
Table B.8 – $\varphi_{ex,th}(CO_2)$ volume fraction of the theoretical dry air-free combustion products, in percent ... 134
Table B.9 – Weighting factor F_{CHP} for weighting $\eta_{eq,\text{CHP}}$ in the η_{son} calculation .. 139
Table B.10 – Weighting factors .. 144
Table B.11 – Weighting factors .. 145
Table B.12 – Weighting factor F_{CHP} for weighting $\varepsilon_{\text{CHP(NOx)}}$ and $\varepsilon_{\text{SUP(NOx)}}$ in the $\varepsilon_{\text{pond(NOx)}}$ calculation .. 146
Table B.13 – Supplementary markings .. 147
Table C.1 – Insulation resistance value.. 158
INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUEL CELL TECHNOLOGIES –

Part 3-400: Stationary fuel cell power systems –
Small stationary fuel cell power system with combined heat and power output

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62282-3-400 has been prepared by IEC technical committee 105: Fuel cell technologies.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>105/620/FDIS</td>
<td>105/624/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts in the IEC 62282 series, published under the general title Fuel cell technologies, can be found on the IEC website.

The reader's attention is drawn to the fact that Annex B, Annex C and Annex D list all of the “in-some-countries” clauses on differing practices of a less permanent nature relating to the subject of this standard.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
FUEL CELL TECHNOLOGIES –

Part 3-400: Stationary fuel cell power systems –
Small stationary fuel cell power system
with combined heat and power output

1 Scope

This part of IEC 62282 applies to small stationary fuel cell power systems serving as a heating appliance providing both electric power and useful heat with or without a supplementary heat generator providing peak load function.

This standard applies to fuel cell power systems that are intended to be permanently connected to the electrical system of the customer (end user). Direct connection to the mains (parallel operation) is also within the scope of this standard.

NOTE 1 Parallel operation is subject to the permission of the local electric power supply utility.

This standard is limited to gas and liquid fuelled fuel cell CHP appliances that have a heat input based on lower heating value of less than or equal to 70 kW. For some regional applications, the output electric power is limited. Specific limitations are given in Clause C.1 for Japan.

This standard applies to systems as shown in Figure 1.

One is a system where both stationary fuel cell power system and supplementary heat generator are installed in one enclosure without any partition.

This standard does not have to apply to the supplementary heat generator of systems where the stationary fuel cell power system and the supplementary heat generator are not built in one enclosure, and whose ducts are not common (that is, each appliance has its own dedicated duct system).

This standard applies to systems intended for operation on the following supplied input fuels:

– natural gas and other methane rich gases;
– fuels derived from oil refining (liquefied petroleum gases, propane, and butane);
– hydrogen as supply gas for the CHP generator.

NOTE 2 It is possible that other fuels such as alcohols (methanol, ethanol), kerosene, or hydrogen for the supplementary heat generator will be added in future amendments or revisions.

This part of IEC 62282 applies to systems where:

– the heat transfer fluid (heat output) is water or a mixture of water and additives to prevent corrosion and to prevent freezing;
– the heat transfer fluid circuit (heat output) can be designed for open or sealed operation;
– the maximum temperature of the heat transfer fluid (heat output) does not exceed 100 °C, or the value given in Clause B.1 for Europe or in Clause D.1 for the USA;
– the maximum pressure of the heat transfer fluid (heat output) circuit does not exceed 0,3 MPa, or the limits given in Clause B.1 for Europe, or C.4.3 for Japan or Clause D.1 for the USA;
– the maximum pressure of the domestic hot water circuit, if installed, does not exceed 0,1 MPa, or the limits as given in Clause D.1 for the USA.
This standard applies to systems with either condensing or non-condensing conditions in the exhaust gas.

This standard applies to appliances
– with ducts included as part of the appliance (Type B, Type C) and
– without ducts (Type A)

Duct systems are shown in Annex F. The chimney in the figures is part of the building and is not within the scope of this standard.

Different combustion air/flue duct circuit configurations are accommodated, see Annex F.

This standard applies to both indoor and outdoor installations.

This standard applies to type testing only.

This standard specifies the requirements for construction, safety, installation, fitness for purpose, rational use of energy, marking, and performance measurement of these appliances.

This standard also provides regional and country specific requirements to facilitate the worldwide application of this IEC standard. These essential regional and country specific requirements are given in Annex B for Europe, in Annex C for Japan and in Annex D for the USA.

If the user or manufacturer chooses a regional specific annex to apply this standard, then that annex applies to the appliance in its entirety without mixing requirements between annexes. The chosen regional or country specific annex becomes normative.
Functional blocks of a small fuel cell CHP appliance without an integrated supplementary heat generator

Stationary fuel cell power system used as a CHP generator

Exhaust gases
Ventilation

Electric power input

Fuel

Oxidant

Inert gas

Ventilation

Fuel processing system

Fuel cell module

Power conditioning system

Thermal management system

Water treatment system

Automatic control system

Internal power needs

Secondary battery

Outgoing heat to utility

Electric power output

Discharge water

Dit document is een voorbeeld van NEN / This document is a preview by NEN
2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE Regional specific standards are given in Clause B.2 for Europe, in Clause C.2 for Japan and in Clause D.2 for the USA.

IEC 60079 (all parts), Explosive atmospheres

IEC 60079-0, Explosive atmospheres – Part 0: Equipment – General requirements

IEC 60079-2, Explosive atmospheres – Part 2: Equipment protection by pressurized enclosure "p"

IEC 60079-10-1, Explosive atmospheres – Part 10-1: Classification of areas – Explosive gas atmospheres
IEC 60079-20-1, Explosive atmospheres – Part 20-1: Material characteristics for gas and vapour classification – Test methods and data

IEC 60079-30-1, Explosive atmospheres – Part 30-1: Electrical resistance trace heating – General and testing requirements

IEC 60335-1, Household and similar electrical appliances – Safety – Part 1: General requirements

IEC 60529, Degrees of protection provided by enclosures (IP Code)

IEC 60721-3-1, Classification of environmental conditions – Part 3 Classification of groups of environmental parameters and their severities – Section 1: Storage

IEC 60721-3-2, Classification of environmental conditions – Part 3 Classification of groups of environmental parameters and their severities – Section 2: Transportation

IEC 60721-3-3, Classification of environmental conditions – Part 3-3: Classification of groups of environmental parameters and their severities – Stationary use at weatherprotected locations

IEC 60730-1, Automatic electrical controls – Part 1: General requirements

IEC 60730-2-5, Automatic electrical controls – Part 2-5: Particular requirements for automatic electrical burner control systems

IEC 60730-2-9, Automatic electrical controls – Part 2-9: Particular requirements for temperature sensing control

IEC 61000-3-2, Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic currents emissions (equipment input current ≤16 A per phase)

IEC 61000-3-3, Electromagnetic compatibility (EMC) – Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connection

IEC TS 61000-3-4, Electromagnetic compatibility (EMC) – Part 3-4: Limits – Limitation of emission of harmonic currents in low-voltage power supply systems for equipment with rated current greater than 16 A

IEC 61000-3-11, Electromagnetic Compatibility (EMC) – Part 3-11: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems – Equipment with rated current ≤75 A and subject to conditional connection

IEC 61000-3-12, Electromagnetic compatibility (EMC) – Part 3-12: Limits – Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current >16 A and ≤ 75 A per phase

IEC 61000-6-1, Electromagnetic compatibility (EMC) – Part 6-1: Generic standards – Immunity for residential, commercial and light-industrial environments

Dit document is een voorbeeld van NEN / This document is a preview by NEN
3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

• IEC Electropedia: available at http://www.electropedia.org/
Stuur naar:
NEN Standards Products & Services
t.a.v. afdeling Klantenservice
Antwoordnummer 10214
2600 WB Delft

Ja, ik bestel
__ ex. IEC 62282-3-400:2016 en;fr Brandstofceltechnologie - Deel 3-400: € 276.69
Stationaire brandstofcelsystemen - Kleine stationaire brandstofcelsystemen
met gecombineerde warmte/kracht output

Wilt u deze norm in PDF-formaat? Deze bestelt u eenvoudig via www.nen.nl/normshop

Gratis e-mailnieuwsbrieven
Wilt u op de hoogte blijven van de laatste ontwikkelingen op het gebied van normen,
normalisatie en regelgeving? Neem dan een gratis abonnement op een van onze
e-mailnieuwsbrieven, www.nen.nl/nieuwsbrieven

Gegevens
Bedrijf / Instelling
T.a.v. O M O V
E-mail
Klantnummer NEN
Uw ordernummer BTW nummer
Postbus / Adres
Postcode Plaats
Telefoon Fax
Factuuradres (indien dit afwijkt van bovenstaand adres)
Postbus / Adres
Postcode Plaats
Datum Handtekening

Voorwaarden
• De prijzen zijn geldig
tot 31 december 2018,
tenzij anders aangegeven.
• Alle prijzen zijn excl. btw,
verzend- en handelingskosten
en onder voorbehoud bij
o.m. ISO- en IEC-normen.
• Bestelt u via de normshop een
pdf, dan betaalt u geen
handeling en verzendkosten.
• Meer informatie: telefoon
015 2 690 391, dagelijks
van 8.30 tot 17.00 uur.
• Wijzigingen en typefouten
in teksten en prijsinformatie
voorbehouden.
• U kunt onze algemene
voorwaarden terugvinden op:
www.nen.nl/leveringsvoorwaarden.