Numerical control of machines — Program format and definition of address words — Part 1: Data format for positioning, line motion and contouring control systems

Commande numérique des machines — Format de programme et définition des mots adresses — Partie 1 : Format de données pour les équipements de commande de mise en position, de déplacement linéaire et de contournage

First edition — 1982-09-15
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 6983/1 was developed by Technical Committee ISO/TC 97, Computers and Information processing, and was circulated to the member bodies in May 1980.

It has been approved by the member bodies of the following countries:

- Australia
- Belgium
- Cuba
- Czechoslovakia
- Finland
- France
- Germany
- Italy
- Netherlands
- Poland
- Romania
- South Africa, Rep. of
- Spain
- Sweden
- United Kingdom
- USA
- USSR

The member body of the following country expressed disapproval of the document on technical grounds:

- Japan
Numerical control of machines — Program format and definition of address words —
Part 1: Data format for positioning line motion and contouring control systems

0 Introduction

A word address program format is described in this International Standard for machine control programs on perforated tape, magnetic media, or provided from a remote data source. The standards cover variable block format only and are not intended to specify machine design.

0.1 This International Standard will replace:

a) ISO 840, Numerical control of machines — 7-bit coded character set.

b) ISO 1056, Numerical control of machines — Punched tape formats — Coding of preparatory functions G and miscellaneous functions M.

c) ISO 1057, Numerical control of machines — Interchangeable punched tape variable block format for positioning and straight-cut machining.

d) ISO 1058, Numerical control of machines — Punched tape variable block for positioning and straight-cut machining.

e) ISO 1059, Numerical control of machines — Punched tape fixed block format for positioning and straight-cut machining.

f) ISO 2539, Numerical control of machines — Punched tape variable block format contouring and contouring positioning.

0.2 Compliance with this International Standard does not guarantee interchangeability of machine programs between machines. Annex D details some of the additional considerations necessary to ensure this interchangeability.

The purpose of this revision of International Standards is:

a) to consolidate the previous format standards into one International Standard for positioning, line motion and contouring systems;

b) to remove outmoded provisions of the previous International Standards, where feasible;

c) to introduce format standards for new functions, not covered by the previous International Standards;

d) to reduce the difference in programming between different machine/control units;

e) to provide guidelines for achieving program interchangeability between machines of similar capacity;

f) to include the preparatory and miscellaneous codes.

This International Standard will consist of several parts; for the moment there are two parts: part 1, the details of data format, and part 2, the preparatory and miscellaneous codes.

1 Scope and field of application

This part of ISO 6983 specifies requirements and makes recommendations for a data format for positioning, line motion and contouring control systems used in the numerical control of machines. This International Standard helps the co-ordination of system design in order to minimize the variety of program manuscripts required, to promote uniformity of programming techniques, and to foster interchangeability of input programs between numerically controlled machines of the same classification by type, process, function, size and accuracy. It is intended that simple numerically controlled machines be programmed using a simple format, which is systematically extendible for more complex machines.

This International Standard is not intended for use in specialized cases of numerically controlled flame cutting machines and drafting machines used specifically and exclusively in the shipbuilding industry. In this specialized application a related format, the "ESSI Format", is specified in ISO 6592.

2 References

This part of ISO 6983 requires, and is based upon, conformance to the International Standards cited below, with the further requirements that character coding shall be selected to provide even parity and the characters used shall be limited to those identified in annex A of this part of ISO 6983.
ISO 6983/1-1982 (E)

ISO 646. 7-bit coded character set for information processing interchange. 1


ISO 6983/2, Numerical control of machines — Program format and definition of address words — Part 2: Coding and maintenance of preparatory functions G and universal miscellaneous functions M. 2

When punched tape is used, the following International Standards are also used:

ISO 1154, Information processing — Punched paper tape — Dimensions and location of feed holes and code holes.


ISO 6582, Shipbuilding — Numerical control of machines — ESSI format 2

3 Program format

3.1 The machine program shall be in blocks of data, which are sets of commands to the control system. A block shall consist of a number of words each of which is a specific instruction to the control system.

3.2 A character designated “end of block” shall terminate every block of data and in addition shall precede the first block of data.

3.3 A “program start” character shall precede all control data including “end of block”. It is recommended that it should be used as an “absolute rewind stop” character.

3.4 All alphabetic, numeric and special characters shall conform to annex A. Those characters required for reproducing a hard copy of the machine program, listed in annex A as “non-printing characters” shall be ignored by the control equipment, with the exception of the LF/NL (end of block) character.

3.5 If there is any group of characters that is not to be processed in accordance with this part of ISO 6983, this group shall be within parenthesis characters.

Any such group shall not contain either “;” or “%” characters.

This group may be processed for display purposes, for example as instructions to an operator.

3.6 Where it is necessary to identify a machine program, this identification should be placed immediately after the program start character and before the first “end of block” character. If the identification contains alpha characters, the entire identification should be enclosed within parentheses. If the program number is greater than the system can store or display, the least significant digits shall be displayed.

3.7 It is recommended that the alignment code should be used at all positions in the program at which it is permissible to start the machine sequence. When used, this code shall be as defined in 5.3.1.1.

The alignment function character “;” may be used as an intermediate rewind stop character.

3.8 The “/” (slash) character shall be used to provide an “optional block skip” function validated at the option of the operator. When used, this character shall immediately precede the “sequence number” word.

3.9 A general classification of the format shall be used to detail the capabilities of the system and machine configuration. This is called the general format classification and is defined in annex B.

3.10 A classification of the data in a block shall be used to specify the programming detail for a system and machine configuration. This is called the detailed format classification and is described in annex C.

3.11 Either metric or inch units of length shall be used.

3.11.1 When a system has the ability to use machine programs which have been prepared in either system of measurement, preparatory codes shall be used to signify whether the coded data is in metric or inch values.

3.11.2 The mode of the control shall be selected by one of the following G codes:

- G70 inch data input;
- G71 metric data input.

4 Format make-up

4.1 A block of data shall consist of the following:

a) the sequence number word;

b) the data words.

4.1.1 Tab characters, which are optional for the tabulation of a printed copy of the data, may be inserted between the words but shall be ignored by the control system.

1) See annex A.

2) At present at the stage of draft.
4.2 The data words shall be presented in the following sequence and shall be not repeated within one block. However, existing control systems may permit the repetition of non-dimensional words but it is recommended for maximum machine program interchangeability that this facility should not be used.

a) the preparatory word;
b) the “dimension” words. These words shall be arranged in the following sequence: X, Y, Z, U, V, W, P, Q, R, A, B, C;
c) the interpolation or thread cutting lead words’ I, J and K. These words applying only to a specific group of axes shall immediately follow that group. The words shall conform in detail to paragraphs 8 and 10;
d) the “feed function” word or words. The feed function word applying to one or more of several axes shall follow the last dimension word to which it applies and immediately follow the applicable interpolation parameter words. The word shall conform in detail to 5.3.3;
e) the “spindle speed function” word;
f) the “tool function” word or words;
g) the “miscellaneous function” word.

4.3 Words may be omitted in a specific block of data. This should be understood as meaning that there is no change in the condition of the machine with respect to the function denoted by the omitted word. Therefore, the “end of block” character may be used after any complete word. Instructions that are inherently executed in a single block shall be repeated whenever necessary.

5 Words

5.1 All words

5.1.1 The address character shall be the first in the word and shall be followed by an algebraic sign, if required, and then by digital data.

5.1.2 The address character shall be in accordance with annex A.

5.1.3 The implicit position of the decimal sign shall be defined by the detailed format classification, see annex C. All control systems shall accept implicit decimal sign programming.

5.1.4 Optionally also, the decimal sign character may be recognized.

Implicit decimal sign and explicit decimal sign format shall not be mixed in any machine program.

In the explicit decimal sign format mode, words from which the decimal sign is missing shall be interpreted as whole numbers.

The procedure for recognition of explicit decimal sign format shall be defined in the detailed format classification, annex C.

5.1.5 In order to reduce the amount of data with the implicit decimal sign format, either leading zeros only, or trailing zeros only, shall be omitted.

NOTE — It is recommended that leading zeros should be omitted.

Zero omission shall be specified in the detailed format classification (see C.2.1).

With explicit decimal sign format both leading zeros before the decimal sign and trailing zeros after the decimal sign may be omitted. For example X1030 represents a dimension of 1.030 mm in the X-axis. X.03 represents a dimension of 0.03 mm in the X-axis.

In either decimal format, a dimension containing only zeros shall be expressed by at least one zero.

5.2 Dimension words

5.2.1 It shall be possible to use both absolute dimension words and incremental (relative) dimension words. The mode of the control shall be selected by one of the following G codes:

- G90 absolute dimension;
- G91 incremental dimension.

5.2.2 All linear dimensions shall be expressed in millimetres or inches and decimal fractions thereof.

5.2.3 Angular dimensions shall be expressed either in degrees and decimal parts thereof, or in decimal parts of a revolution.

NOTE — The use of degrees and decimal parts of a degree, is recommended for the expression of all angular dimensions.

5.2.4 The algebraic sign (+ or -) is part of the dimension word and shall follow the address character and shall precede the numerical character. If the sign is omitted, a plus (+) sign shall be assumed. The control system shall use the negative sign for a negative absolute dimension word and for a negative direction movement with an incremental word.

5.2.5 The resolution of the linear and angular dimensions used in the program shall be defined by the detailed format classification (see annex C).

5.3 Non-dimensional words

5.3.1 Sequence number

The number of digits shall be specified by the detailed format classification, see annex C. If sequence number word in a machine program contains more digits than are specified by a particular control equipment, the least significant digits shall be displayed.
5.3.1.1 It is recommended that at all positions in the program at which it is permissible to start a machine sequence, the alignment code should replace the sequence number address character.

5.3.2 Preparatory function

It shall be expressed by a coded number. For designation see part 2 of ISO 6983.

5.3.3 Feed function

The number of digits shall be designated by the detailed format classification (see annex C). Selection of the type of feed function associated with 5.3.3.1 to 5.3.3.4 shall be by the following preparatory (G) codes, detailed in part 2 of ISO 6983:

- G93 Inverse time;
- G94 Feed per minute;
- G95 Feed per revolution.

5.3.3.1 It is recommended that when the feed is independent of spindle speed, the digits should represent directly the vectorial motion in millimetres per minute or inches per minute.

5.3.3.2 It is recommended that when the feed is dependent on spindle speed, the digits should represent directly the vectorial motion in millimetres per revolution or inches per revolution.

5.3.3.3 It is recommended that when the feed is applied to a rotary motion only, the digits should represent the vectorial motion in degrees per minute.

5.3.3.4 When simultaneous interpolation in both linear and rotary axes are possible, independent of spindle speed, the rate of vectorial motion may be expressed as a feed command. This feed command shall be the reciprocal of time in minutes to execute the block and is equivalent to the vector velocity (expressed in millimetres or inches per minute) divided by the vector distance of the tool path (expressed in millimetres or inches).

5.3.3.5 It is recommended that preparatory code G00 should be used for rapid positioning (see part 2 of this International Standard).

As an alternative, if the F word is used for traverse, the code shall be specified in the detailed format classification and it shall be defined as modal or non-modal.

5.3.3.6 For any combination of interdependent axes which can be moved simultaneously or sequentially with the principal axes, the F character shall be used as address for the feed word. An independent axis which can be moved simultaneously with the principal axes shall use the E character as address for the feed word.

5.3.3.7 As an alternative to the recommended practice, the feed function may consist of a two (2) digit code with increasing arbitrary values of feed rate represented by increasing code number.

5.3.4 Spindle function

The number of digits shall be designated by the detailed format classification (see annex C). Where necessary, selection of the type of spindle speed function shall be made by the following preparatory (G) codes, detailed in part 2 of ISO 6983:

- G96 Constant surface speed;
- G97 RPM.

5.3.4.1 It is recommended that when the digits represent RPM they shall represent directly the spindle rotation in revolutions per minute.

5.3.4.2 When the digits represent surface speed (see 11.1), the digits shall represent metres per minute or feet per minute.

5.3.4.3 As an alternative to the recommended practice, the spindle function may consist of a two (2) digit code, with increasing arbitrary values of spindle speed represented by increasing code number.

5.3.5 Tool function

The T word shall be used for tool selection and optionally the same word may select the tool compensation-offset. When tool compensation-offset is selected by a different word, the D word is recommended. The T word, and the D word if used, shall be designated by the detailed format classification (see annex C).

5.3.6 Miscellaneous function

It shall be expressed by a coded number. For designation see part 2 of ISO 6983.

6 Programming methods for interpolation

6.1 Principles

Interpolation is performed over a pre-determined portion of a given curve. The portion interpolated is called a "span" and may be covered by one or more blocks of information.

Data necessary to define a "span" shall obey one or more of the following principles:

6.1.1 An appropriate G-code shall be used to define the functional nature of the curve, i.e. linear, circular, or parabolic.
Stuur naar:

NEN Standards Products & Services
t.a.v. afdeling Klantenservice
Antwoordnummer 10214
2600 WB Delft

Ja, ik bestel

__ ex. ISO 6983-1:1982 and Numerical control of machines - Program format and definition of address words - Part 1: Data format for positioning, line motion and contouring control systems

€ 73.95

Wilt u deze norm in PDF-formaat? Deze bestelt u eenvoudig via www.nen.nl/normshop

Gratis e-mailnieuwsbrieven
Wilt u op de hoogte blijven van de laatste ontwikkelingen op het gebied van normen, normalisatie en regelgeving? Neem dan een gratis abonnement op een van onze e-mailnieuwsbrieven. www.nen.nl/nieuwsbrieven

Gegevens

Bedrijf / Instelling
T.a.v. O M O V
E-mail
Klantnummer NEN
Uw ordernummer BTW nummer
Postbus / Adres
Postcode Plaats
Telefoon Fax
Factuuradres (indien dit afwijkt van bovenstaand adres)
Postbus / Adres
Postcode Plaats
Datum Handtekening

Voorwaarden
• De prijzen zijn geldig tot 31 december 2018, tenzij anders aangegeven.
• Alle prijzen zijn excl. btw, verzend- en handelingskosten en onder voorbehoud bij o.m. ISO- en IEC-normen.
• Bestelt u via de normshop een pdf, dan betaalt u geen handeling en verzendkosten.
• Meer informatie: telefoon 015 2 690 391, dagelijks van 8.30 tot 17.00 uur.
• Wijzigingen en typefouten in teksten en prijsinformatie voorbehouden.
• U kunt onze algemene voorwaarden terugvinden op: www.nen.nl/leveringsvoorwaarden.