Information technology –
Microprocessor systems –
VICbus – Inter-crate cable bus

Technologies de l’information –
Systèmes à microprocesseurs –
VICbus – Bus à câbles inter-châssis
CONTENTS

- **FOREWORD** .. 7

Clause

1 **Scope** ... 8

2 **Introduction to the ISO/IEC 11458 VICbus standard** .. 9

 - 2.1 Objectives .. 9
 - 2.2 Standard terminology .. 9
 - 2.2.1 Rule <N.n> .. 9
 - 2.2.2 Recommendation <N.n> ... 9
 - 2.2.3 Permission <N.n> ... 10
 - 2.2.4 Observation <N.n> ... 10
 - 2.3 Other terminology ... 10
 - 2.4 Timing diagrams ... 10
 - 2.5 Tables ... 10
 - 2.6 Data representation .. 10

3 **Data transfer bus** ... 11

 - 3.1 Introduction .. 11
 - 3.2 DTB cycle types ... 11
 - 3.2.1 Direct cycles ... 12
 - 3.2.2 Transparent cycles .. 12
 - 3.3 Use of the DTB information lines 13
 - 3.3.1 The address phase .. 13
 - 3.3.2 The data phase ... 13
 - 3.3.3 Address / data lines AD31-ADO0 13
 - 3.3.4 Control lines CL3-CL0 ... 13
 - 3.3.5 Identification lines ID4-ID0 14
 - 3.3.6 Device number signals DN4-DN0 14
 - 3.3.7 Address signals A31-A02 .. 14
 - 3.3.8 Address extension signals AE5-AE0 14
 - 3.3.9 Register select signals RS4-RS0 14
 - 3.3.10 Block transfer signal BLT 16
 - 3.3.11 Write signal WRITE .. 16
 - 3.3.12 Byte selection signals LWORD, A01, ASE1, ASE0, DSEL0, DSEL1 16
 - 3.3.13 Interrupter number signals IN4-IN0 18
 - 3.3.14 Slave response signal SERR 18
 - 3.3.15 Data signals D31-D00 ... 18
 - 3.4 Transparent VME-A64 cycle ... 18
 - 3.5 Data transfer cycle - bus protocols and timing 18
 - 3.5.1 Block transfer cycles .. 19
 - 3.5.2 Read-modify-write cycles .. 19
 - 3.6 Compelled protocol ... 21
 - 3.6.1 The address phase ... 21
 - 3.6.2 The data phase ... 21
 - 3.7 Non-compelled protocols ... 23
 - 3.7.1 Non-compelled 1 (NC1) ... 25
 - 3.7.2 Non-compelled 2 (NC2) ... 27
 - 3.8 Slave participation in DTB cycles 28
3.9 DTB timing rules .. 29

4 Arbitration ... 41

4.1 Introduction ... 41

4.2 Lines .. 41

4.3 Arbitration protocol .. 41

4.4 Arbiter .. 42

4.5 Requester .. 43

4.6 Transfer of DTB mastership 43

4.7 Loss of the arbiter ... 44

4.8 Arbitration timing rules ... 48

5 Interrupts .. 50

5.1 Introduction ... 50

5.2 Lines and signals ... 50

5.3 Interrupt request signal selection 50

5.4 Interrupt protocol .. 51

5.5 Interrupter ... 52

5.6 Interrupt transfer ... 53

5.7 Timing regulations ... 55

6 Utilities .. 57

6.1 Introduction ... 57

6.1.1 Arbitration lock line ALOCK 57

6.1.2 Device failure line DEVFAIL 57

6.1.3 Interrupt request select lines INTSEL0 and INTSEL1 57

6.1.4 VICbus reset line VICRESET 58

6.2 INTSEL generator selection 58

6.3 Reset .. 61

6.3.1 Global reset VICRESET .. 61

6.3.2 Selective reset .. 61

6.4 Online and offline states .. 62

6.4.1 Regulations .. 63

6.4.2 Power-up condition .. 64

6.5 Fault tolerance ... 64

6.6 Cable connection and disconnection in robust systems 65

7 Electrical specifications ... 66

7.1 Introduction ... 66

7.2 Bus drivers and receivers .. 66

7.3 Cables ... 67

7.3.1 Cable characteristics ... 68

7.4 Connectors ... 68

7.5 Terminators .. 70

7.5.1 Arbitration daisy-chain (BG line) termination 70

7.5.2 Terminator power ... 70

7.5.3 Terminators and BGLOOP 70

7.6 Cable continuity for offline devices 72

8 VICbus registers .. 74

8.1 Introduction ... 74

8.2 Register summary ... 74

8.3 Control and status register - CSR 75

8.4 Online register - OLR .. 76

8.5 Device operational register - DOR 77

8.6 Reset register - RR ... 78
8.7 Transparent register - TR
8.8 Device identification registers - DIR

Annexes
A Interfacing between VMEbus and VICbus
A.1 Introduction
A.2 Data transfer bus
A.2.1 Address and data
A.2.2 VMEbus AM codes
A.2.3 VICbus slave response
A.2.4 VMEbus RETRY*
A.2.5 VMEbus D64 transfers
A.2.6 VMEbus address only cycles
A.2.7 Block transfers
A.3 Interrupts
A.4 Utilities
A.4.1 System failure
A.4.2 System reset
A.5 VMEbus interface functions
B Glossary
C Summary of lines and signals
D Arbitration dead lock
E Wired-OR glitch
F VICbus electrical characteristics
F.1 Electrical information
F.2 Practical VICbus implementations
Tables
1 VICbus data representation ... 10
2 Direct cycles ... 12
3 Transparent cycles ... 12
4 Use of the address / data, control and identification lines .. 15
5 VMEbus byte alignment ... 17
6 Byte lane alignment .. 17
7 Transparent VME-A64 signal assignment .. 18
8 Summary of slave participation in DTB cycles ... 28
9 Master - timing regulations ... 36
10 Slave - timing regulations ... 39
11 Arbiter - timing regulations .. 48
12 Requester - timing regulations ... 49
13 Interrupt request multiplexing .. 50
14 IACK byte alignment .. 52
15 Summary of interrupt protocol actions ... 54
16 Interrupts - timing regulations .. 56
17 INTSEL generator selection - timing regulations ... 60
18 Summary of the online / offline state of a device following various actions 62
19 Summary of actions permitted in the three online / offline states ... 62
20 VICbus lines ... 67
21 VICbus connector pin assignments .. 69
22 Register summary .. 74
23 Command and status register ... 75
24 Online register .. 76
25 Device operational register ... 77
26 Reset register ... 78
27 Transparent register .. 79
28 Device identification registers - byte assignments ... 80
29 Device identification register 2 - bit assignments .. 81
30 Device identification register 3 - bit assignments .. 81
A.1 VMEbus interface control and status functions .. 89
<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DTB cycle</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Compelled protocol</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Non-compelled 1 protocol</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Non-compelled 2 protocol</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Compelled cycle</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Compelled cycle last data transfer and end of cycle</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>NC1 address phase and first data transfer</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>NC1 last data transfer and end of cycle</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>NC2 address phase and first data transfer</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>NC2 last data transfer and end of cycle</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>Arbitration 1</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Arbitration-2</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>Arbitration-3</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>Interrupt request selection timing</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>INTSEL generator selection</td>
<td>59</td>
</tr>
<tr>
<td>16</td>
<td>Electrical transmission</td>
<td>71</td>
</tr>
<tr>
<td>17</td>
<td>Bus grant daisy chain and BGLOOP</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>Bus Grant termination and continuity of lines in robust systems</td>
<td>73</td>
</tr>
<tr>
<td>A.1</td>
<td>Inter-crate block transfers</td>
<td>85</td>
</tr>
<tr>
<td>A.2</td>
<td>DEVFAIL / SYSFAIL interconnection for a VMEbus to VICbus interface</td>
<td>87</td>
</tr>
<tr>
<td>A.3</td>
<td>Reset circuit for a VMEbus to VICbus interface</td>
<td>88</td>
</tr>
<tr>
<td>D.1</td>
<td>Arbitration dead-lock resolution</td>
<td>95</td>
</tr>
<tr>
<td>E.1</td>
<td>Wired OR glitch</td>
<td>96</td>
</tr>
<tr>
<td>F.1</td>
<td>VICbus termination</td>
<td>97</td>
</tr>
<tr>
<td>F.2</td>
<td>Device / cable length derating</td>
<td>98</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialised system for world-wide standardisation. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organisation to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 11458 was prepared by Joint technical committee ISO/IEC JTC 1, Information technology, SC 26: Microprocessor Systems.

Annex A forms an integral part of ISO/IEC 11458. Annexes B to F are for information only.
Information technology - Microprocessor systems -
VICbus - Inter-crate cable bus

1 Scope

The widespread use of high-performance, multi-processor systems based on backplane buses such as the IEC 821 bus (VMEbus), has inevitably led to the requirement to create multi-crate (-subrack, -chassis, etc.) systems. The VICbus inter-crate cable bus is designed to achieve such assemblies in a standard way.

VICbus, a multiplexed, multi-master, multi-slave cable bus, connects multiple backplane buses or stand-alone devices, providing transparent, softwareless interconnection for low latency short data transactions and fast transmission of data blocks over cables of up to 100 m in length. Address and data signals, each of 32 bits, together with those necessary for the control of the bus protocols, signal multiplexing, reset and error reporting are transmitted on twisted-wire pairs using differential line drivers and receivers. Up to 31 devices are permitted on a single VICbus cable.

VICbus data transfer protocols include both a compelled mode with end-to-end acknowledgement as well as two, high speed, non-compelled modes for high rate data transfers. The compelled protocols allow both broadcast (master write) and broadcall (master read) data transfers. One of the non-compelled protocols allows broadcast transfers, whereas neither permit broadcall operation.

Inter-master arbitration uses an efficient, modified single-level, daisy-chained mechanism. The interrupt mechanism allows 32 interrupt requests, multiplexed on eight physical lines. The specification includes system failure reporting, reset and live connection and disconnection, as well as the specification of control and status registers. Particular attention has been paid to redundancy of operation.

Whilst VICbus has been derived with multi-crate backplane bus systems in mind, this specification does not preclude the design of stand-alone VICbus devices. A normative annex giving rules and recommendations for a VMEbus to VICbus interface has been included, and further, similar annexes for other backplane bus standards will be added as the need arises.
2 Introduction to the ISO/IEC 11458 VICbus standard

2.1 Objectives

VICbus is a cable bus intended to be used to connect together multiple devices, particularly backplane bus systems, efficiently and with the possibility of software transparent operation, to allow large multi-crate, multi-processor systems to be constructed.

The objectives of this standard are to:

a) provide a standard cable bus for the interconnection of multiple devices, both backplane bus systems, such as the IEC821 VMEbus, and stand-alone apparatus;

b) specify the electrical characteristics of the cable bus;

c) specify the protocols that precisely define the interaction between devices connected to the VICbus;

d) specify the mechanisms necessary to construct fault-tolerant, multi-device systems;

e) provide the necessary definitions, terminology and background information to fully describe the VICbus protocols and other mechanisms.

2.2 Standard terminology

To avoid ambiguity, and to ensure that it is clear what the requirements for compliance are, many of the paragraphs in this standard are prefixed with sequentially numbered keywords by clause (N), known collectively as regulations, thus:

RULE <N.n>

RECOMMENDATION <N.n>

PERMISSION <N.n>

OBSERVATION <N.n>

2.2.1 Rule <N.n>

Rules form the basis of the VICbus standard, and may be expressed in textual, diagrammatic or tabular form. They use the imperative form and include the upper case words SHALL or SHALL NOT, which are reserved for this purpose only. Rules are printed in italics, thus:

RULE 2.1

Example: rules contain the upper case words SHALL or SHALL NOT.

2.2.2 Recommendation <N.n>

Recommendations contain information which will be very useful, if not vital, when designing to the VICbus standard and designers are encouraged to heed the advice given to ensure the best possible interpretation of the specification's requirements.

RECOMMENDATION 2.1

Example: recommendations contain very useful information.

2.2.3 Permission \(<N.n>\)

Permissions clarify aspects of the standard where multiple choices might be possible, and indicate acceptable lines of approach. The upper case word MAY is reserved for this purpose only.

PERMISSION 2.1

Example: permissions help you choose and include the upper case word MAY.

2.2.4 Observation \(<N.n>\)

Observations serve to explain the rationale behind rules and other requirements.

OBSERVATION 2.1

Example: observations explain the rationale of certain requirements.

2.3 Other terminology

All normative terms (that is those having a specified meaning within the context of this document) are typed in bold font, in general the first time they appear, thus: arbiter. Such terms are explained in the informative glossary, included as annex B, in addition to any references within the body of the text.

2.4 Timing diagrams

Timing diagrams are drawn such that a high level represents the asserted state (logical 1).

2.5 Tables

The asserted (logical 1) and deasserted (logical 0) states are indicated in tables as "1" and "0" respectively.

2.6 Data representation

Table 1 shows the labelling and significance of the bytes (groups of eight bits) within the four-byte location selected by a VICbus address or by the register select signals.

Table 1 - VICbus data representation

<table>
<thead>
<tr>
<th>Most significant bit</th>
<th>Least significant bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte (0)</td>
<td>Byte (1)</td>
</tr>
<tr>
<td></td>
<td>Byte (2)</td>
</tr>
<tr>
<td></td>
<td>Byte (3)</td>
</tr>
<tr>
<td>Data bits</td>
<td></td>
</tr>
<tr>
<td>31....................24</td>
<td>23....................16</td>
</tr>
<tr>
<td></td>
<td>7....................0</td>
</tr>
</tbody>
</table>
3 Data transfer bus

3.1 Introduction

The Data Transfer Bus (DTB) is the means by which data, address, control and status information is transferred between VICbus devices. The device containing the current master uses the address information to select one or more participating slaves and the addresses within them with which it wishes to exchange data. The control information specifies the direction of data transfer and the number and position of bytes within the four-byte data bus which are to be transferred.

VICbus devices can be self-contained units, interfaces between VICbus and a backplane bus such as VMEbus, or both. Thus the DTB also carries control information which indicates whether the required slave is within a participating slave device or on a backplane associated with it.

Two types of data transfer protocol are specified for use on the DTB: compelled and non-compelled. The compelled protocol uses a full handshake which permits the cycle timing to be controlled by both the master and the participating slave(s) and, if the slave is on a backplane bus, permits the VICbus timing to be interlocked with that of the backplane. The two non-compelled protocols provide a faster means of transmitting data, by eliminating the round-trip propagation time of the cable which is inherent in the compelled protocol, however they can only be used to access slaves within VICbus devices.

The VICbus arbitration mechanism (specified in clause 4) ensures that only one master may use the DTB at a time. However, the use of bus drivers with a "wired-OR" capability permits a master to transmit data to several participating slaves simultaneously (broadcast operation) or to receive data from several participating slaves simultaneously (broadcast operation) when using the compelled protocol, or when using one of the non-compelled protocols in the case of broadcast operation. Additionally, whichever protocol is in use, data transfers may be spied upon (that is read on-the-fly with no active participation in the transfer protocol by the device concerned).

The DTB consists of two groups of physical lines: the 42 information lines (AD31-AD00, CL3-CL0, ID&ID0 and SERR) onto which logical signals are multiplexed, and the three timing lines (AS, DS and WAIT) which are not multiplexed and for which the terms "lines" and "signals" can therefore be used interchangeably.

3.2 DTB cycle types

When initiating a DTB cycle, the master transmits control information indicating the cycle type to be performed, so defining the following:

a) the data transfer protocol to be used;

b) whether the required slave is within the addressed device (direct cycles) or on an associated backplane bus, if the device is an interface (transparent cycles);

c) whether a data transfer cycle or an interrupt acknowledge cycle is to be performed (the latter is specified in clause 5);

d) the address width used (32 or 64 bits) on associated VMEbus backplanes;

e) the byte alignment used (VMEbus or byte lane aligned (BLA), specified in 3.3.12).

Table 4 details the cycle types in terms of the lines and signals used.
3.2.1 Direct cycles

Direct cycles access VICbus slaves within devices rather than those connected to an associated backplane bus. The RS4-RS0 signals (see 3.3.9, below), are used to select one of 32 register locations (some of which may use the A31-A02 signals for sub-addressing). The allocation of mandatory and user definable register locations is specified in clause 8.

The three direct cycle types described in this specification are listed in table 2.

RULE 3.1
A device SHALL be capable of responding to direct compelled cycles as a slave.

Table 2 - Direct cycles

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Protocol</th>
<th>Data alignment</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct compelled</td>
<td>Compelled</td>
<td>Byte lane</td>
<td>Transfers to slaves within devices (that is not on an associated backplane bus) with handshake control</td>
</tr>
<tr>
<td>Direct non-compelled 1</td>
<td>Non-compelled</td>
<td>Byte lane</td>
<td>Transfers to slaves within devices with no handshake control</td>
</tr>
<tr>
<td>Direct non-compelled 2</td>
<td>Non-compelled</td>
<td>Byte lane</td>
<td>Transfers to slaves within devices with no immediate handshake control; the slave's responses being pipelined. The initial transfer is the exception, since it is fully handshaken in order to confirm the existence and capability of the slave</td>
</tr>
</tbody>
</table>

3.2.2 Transparent cycles

The compelled protocol is used to access slaves connected to the backplane bus associated with an interface device, and the timing is interlocked with that of the backplane bus. Note that the non-compelled protocols cannot be used to implement transparent cycles, as this interlock is not possible.

The three types of transparent cycle described in this specification are listed in table 3.

Table 3 - Transparent cycles

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Protocol</th>
<th>Data alignment</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent VME-A64 1)</td>
<td>Compelled</td>
<td>VMEbus</td>
<td>VMEbus A64 cycles are transmitted over VICbus and a corresponding A64 cycle is generated on an associated VMEbus backplane</td>
</tr>
<tr>
<td>Transparent VME</td>
<td>Compelled</td>
<td>VMEbus</td>
<td>VMEbus A32, A24 or A16 cycles are transmitted over VICbus and corresponding cycles are generated on an associated VMEbus backplane</td>
</tr>
<tr>
<td>Transparent BLA</td>
<td>Compelled</td>
<td>Byte lane</td>
<td>Cycles are generated on an associated non-VMEbus backplane (intended for future applications)</td>
</tr>
</tbody>
</table>

1) A64 transfers are described in the proposed revision of the VMEbus specification document known as “VME64”.

Dit document is een voorbeeld van NEN / This document is a preview by NEN
3.3 Use of the DTB information lines

In order to keep the number of physical lines to a practical number for a cable bus, the DTB information lines are multiplexed, and a DTB cycle therefore consists of an **address phase** and a **data phase** the latter consisting of one or more data transfers. The structure of a DTB cycle is illustrated in figure 1.

3.3.1 The address phase

The address phase is used by the master to:

a) select the slave device or devices which it requires to participate in the cycle;

b) specify the cycle type;

c) transmit an address internal to the slave or slaves.

3.3.2 The data phase

The data phase is used to transmit data to and / or from the selected address within the slave or slaves. In the case of a block transfer, it transfers data to or from successive addresses.

The multiplexed signals carried by the DTB information lines during the address and data phases are shown in tables 4, 5 and 6, and defined in subclauses 3.3.3 to 3.3.15, inclusive. In some cases the signal carried by a particular line depends on the cycle type, as well as on the phase of the cycle (address or data).

![Figure 1 - DTB cycle](image)

Figure 1 - DTB cycle

3.3.3 Address / data lines AD31-AD00

The 32 address / data lines (AD31-AD00) carry address and byte selection signals during the address phase, and data signals during the data phase.

3.3.4 Control lines CL3-CL0

The four control lines (CL3-CL0) carry control signals during both the address and data phases. In addition, they carry some addressing signals during the address phase of the transparent VME and VME-A64 cycle types. During the address phase, CL3 and CL2 carry cycle type definition signals, whilst CL1 and CL0 either carry further cycle type definition signals or addressing signals. During the
data phase, all four control lines carry additional protocol and byte selection signals.

3.3.5 Identification lines ID4-ID0

The five identification lines (ID4-ID0) carry device selection and other addressing signals. During the address phase they carry the device number (or, in the case of an IACK cycle, the interrupter number) signals. During the data phase they carry address extension signals for transparent cycles, and register select signals for direct cycles.

3.3.6 Device number signals DN4-DN0

The device number signals carry the highest level of addressing information. They are used by the master to select the VICbus slave device or devices which it wishes to participate in the cycle. Device numbers in the range 31-1 select individual devices, whilst device number 0 (zero) selects all on-line devices capable and willing to participate in broadcast or broadcall operations. Every slave device is normally equipped with a means (for example a switch or switches) to allow the user to set the device number by which it will be selected.

RECOMMENDATION 3.1
Equip a slave device with a means whereby a user can set the device number by which it will be selected. Design the device such that the device number can be set and is subsequently visible at its front panel.

OBSERVATION 3.1
It is the responsibility of the user to ensure that no more than one slave has a particular device number, if this is undesirable.

RULE 3.2
A cycle carrying device number 0 (zero) SHALL indicate a broadcast or broadcall cycle.

3.3.7 Address signals A31-A02

The address signals A31-A02 are used to select a four-byte (32 bit) location within selected slave or slaves, except during certain direct cycles when only the register select signals are used for this purpose. The selection of bytes within a four-byte location is described in 3.3.12.

PERMISSION 3.1
An interface to a backplane bus MAY provide address mapping facilities whereby the user can program the correspondence between blocks of addresses on VICbus and blocks of addresses on the backplane bus.

3.3.8 Address extension signals AE5-AE0

The address extension signals AE5-AE0 are used during transparent cycles to pass extra addressing information over the VICbus (for example the VMEbus address modifier signals - see annex A).

3.3.9 Register select signals RS4-RS0

The register select signals are used during direct cycles to select one of 32, four-byte register locations within selected slave or slaves, as specified in clause 8. For most register locations, the address signals (A31-A02) are not used and, therefore, do not need to be decoded by the slave or slaves, however, access to facilities within the device, such as banks of memory, may require their use.
Table 4 - Use of the address / data, control and identification lines

NOTE - RSVD = Reserved for future allocation. All other mnemonics are explained in the accompanying text.

<table>
<thead>
<tr>
<th>Address Phase</th>
<th>Address / data</th>
<th>Control lines</th>
<th>Identification lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle type</td>
<td>AD31-AD02 1)</td>
<td>CL3 CL2 CL1 CL0</td>
<td>ID4 ID3 ID2 ID1 ID0</td>
</tr>
<tr>
<td>Transparent VME-A64</td>
<td>A31-A02</td>
<td>0 0 AE5 AE4</td>
<td>DN4 DN3 DN2 DN1 DN0</td>
</tr>
<tr>
<td>Transparent BLA</td>
<td>A31 A02</td>
<td>0 1 0 0</td>
<td>DN4 DN3 DN2 DN1 DN0</td>
</tr>
<tr>
<td>Reserved</td>
<td>A31-A02</td>
<td>0 1 0 1</td>
<td>RSVD RSVD RSVD RSVD RSVD</td>
</tr>
<tr>
<td>Reserved</td>
<td>A31-A02</td>
<td>0 1 1 0</td>
<td>RSVD RSVD RSVD RSVD RSVD</td>
</tr>
<tr>
<td>IACK</td>
<td>A31-A02</td>
<td>0 1 1 1</td>
<td>IN4 IN3 IN2 IN1 IN0</td>
</tr>
<tr>
<td>Direct compelled</td>
<td>A31-A02</td>
<td>1 0 0 0</td>
<td>DN4 DN3 DN2 DN1 DN0</td>
</tr>
<tr>
<td>Direct non-compelled 1</td>
<td>A31-A02</td>
<td>1 0 0 1</td>
<td>DN4 DN3 DN2 DN1 DN0</td>
</tr>
<tr>
<td>Direct non-compelled 2</td>
<td>A31-A02</td>
<td>1 0 1 0</td>
<td>DN4 DN3 DN2 DN1 DN0</td>
</tr>
<tr>
<td>Reserved</td>
<td>A31-A02</td>
<td>1 0 1 1</td>
<td>RSVD RSVD RSVD RSVD RSVD</td>
</tr>
<tr>
<td>Transparent VME</td>
<td>A31-A02</td>
<td>1 1 AE5 AE4</td>
<td>DN4 DN3 DN2 DN1 DN0</td>
</tr>
</tbody>
</table>

1) For details of the use of AD01 and AD00 in the address phase, see tables 5 and 6.

<table>
<thead>
<tr>
<th>Data Phase</th>
<th>Address / data</th>
<th>Control lines</th>
<th>Identification lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle type</td>
<td>AD31-AD00</td>
<td>CL3 CL2 CL1 CL0</td>
<td>ID4 ID3 ID2 ID1 ID0</td>
</tr>
<tr>
<td>Transparent VME-A64</td>
<td>D31-D00 2)</td>
<td>BLT WRITE DSEL1 DSEL0</td>
<td>RSVD AE3 AE2 AE1 AE0</td>
</tr>
<tr>
<td>Transparent BLA</td>
<td>D31-D00</td>
<td>BLT WRITE DSEL1 DSEL0</td>
<td>RSVD AE3 AE2 AE1 AE0</td>
</tr>
<tr>
<td>Reserved</td>
<td>D31-D00</td>
<td>RSVD WRITE RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>D31-D00</td>
<td>RSVD WRITE RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD</td>
<td></td>
</tr>
<tr>
<td>IACK</td>
<td>D31-D00</td>
<td>RSVD 0 DSEL1 DSEL0</td>
<td>RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD</td>
</tr>
<tr>
<td>Direct compelled</td>
<td>D31-D00</td>
<td>BLT WRITE DSEL1 DSEL0</td>
<td>RS4 RS3 RS2 RS1 RS0</td>
</tr>
<tr>
<td>Direct non-compelled 1</td>
<td>D31-D00</td>
<td>BLT 1 DSEL1 DSEL0</td>
<td>RS4 RS3 RS2 RS1 RS0</td>
</tr>
<tr>
<td>Direct non-compelled 2</td>
<td>D31-D00</td>
<td>BLT WRITE DSEL1 DSEL0</td>
<td>RS4 RS3 RS2 RS1 RS0</td>
</tr>
<tr>
<td>Reserved</td>
<td>D31-D00</td>
<td>RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD</td>
<td></td>
</tr>
<tr>
<td>Transparent VME</td>
<td>D31-D00</td>
<td>BLT WRITE DSEL1 DSEL0</td>
<td>RSVD AE3 AE2 AE1 AE0</td>
</tr>
</tbody>
</table>

2) For an explanation of the use of the AD lines in transparent VME-A64 cycles, see 3.4.
ALTIJD DE ACTUELE NORM IN UW BEZIT HEBBEN?

Via het digitale platform NEN Connect heeft u altijd toegang tot de meest actuele versie van deze norm. Vervallen versies blijven ook beschikbaar. U en uw collega’s kunnen de norm via NEN Connect makkelijk raadplegen, online en offline.

Kies voor slimmer werken en bekijk onze mogelijkheden op www.nenconnect.nl.

Heeft u vragen?
Onze Klantenservice is bereikbaar maandag tot en met vrijdag, van 8.30 tot 17.00 uur.

Telefoon: 015 2 690 391
E-mail: klantenservice@nen.nl