Rapport: Voorbeeldberekening portaalconstructie tijdens aardbevingen

Rapportcode: 18.0024-2

Datum: 24 oktober 2018
Voorbeeldberekening portaalconstructie tijdens aardbevingen

Rapportcode: 18.0024-2 Datum: 24 oktober 2018 Pagina: 2/38

SHR
"Het Cambium"
Nieuwe Kanaal 9b
Postbus 497
6700 AL Wageningen

Tel: 0317 – 467366
Fax: 0317 – 467399

E-mail: w.degroot@shr.nl / a.jorissen@shr.nl

Opdrachtgever: NEN Bouw
Vlinderweg 6
2600 GB DELFT

Bijlagen: 7

Projectnummer: 18.0024-2

Auteurs:

ir. W.H. de Groot
projectleider

prof. dr. ir. A.J.M. Jorissen
2e auteur

Trefwoorden: Aardbevingen, Eurocode 8, NPR 9998, portaalconstructie

Inhoudsopgave

1 Inleiding .. 4

2 Uitgangspunten ... 4

3 Bepalingsmethoden NPR 9998 – 4.3.3 .. 6

4 Verkennende beoordeling van de constructie .. 7
 4.1 Beoordeling van de regelmatigheid van de plattegrond ... 7
 4.2 Beoordeling van regelmatigheid over de hoogte ... 8
 4.3 Beoordeling van de constructie ... 8

5 Berekeningen ... 9
 5.1 Statisch equivalent voor de dynamische aardbevingsbelasting 9
 5.2 Maatgevende eigentrillingstijd (T) .. 11
 5.3 Maximale horizontale statische belasting ... 12

6 Rekenvoorbeeld industriegebouw met portaalconstructie ... 13
 6.1 Windbelasting ... 13
 6.2 Sneeuwbelasting .. 14
 6.3 De in rekening te brengen massa .. 15
 6.4 Eigenfrequentie ... 15
 6.5 Aardbevingsbelasting ... 18
 6.6 Controle van de verbindingsmiddelen in de knoop .. 19
 6.7 Wapenen van de verbinding en oversterkte van de liggers 20
 6.8 Aardbevingsbelasting versus windbelasting .. 21

7 Conclusie .. 22

Gebruikte symbolen .. 23

Literatuur ... 23

Bijlage 1: Methode Rayleigh .. 25
Bijlage 2: NPR 9998 webtool seismische krachten: Wittewierum 26
Bijlage 3: Afleiding moment op de knoop van een portaal: momentvast 27
Bijlage 4: Afleiding moment op de knoop van een portaal: rotatieveer 29
Bijlage 5: Afleiding rotatiestijfheid voor een stiftpatroon met straal r 31
Bijlage 6: Afschuifsterkte stiftpaarverbinding 8 mm assenstaal 32
Bijlage 7: Controle portaal ten gevolge van wind- en sneeuwbelasting 34
Bijlage 8: Documentatie stiften 8 mm assenstaal (S235) Rothobraas STA 35
1 Inleiding

Vanwege de gaswinning in Noordoost-Groningen hebben in deze provincie in de afgelopen periode een reeks aardbevingen plaatsgevonden. Naar aanleiding hiervan is door het Ministerie van Economische Zaken (EZ) besloten om door NEN een Nationale Praktijk Richtlijn, NPR 9998 (Beoordeling van de constructieve veiligheid van een gebouw bij nieuwbouw, verbouw en afkeuren – Grondslagen voor aardbevingsbelastingen: geïnduceerde aardbevingen) op te laten stellen voorafgaande aan een later op te stellen Nationale Bijlage bij NEN-EN 1998 (Eurocode 8 – Ontwerp en berekening van aardbevingsbestendige constructies – delen 1 t/m 6). Via NEN is SHR betrokken bij het opstellen van NPR 9998. SHR focust zich op het aardbevingsbestendig bouwen met hout. Bij het opstellen van NPR 9998 zijn de in NEN-EN 1998 (Eurocode 8) opgenomen teksten leidend geweest.

In dit rapport wordt op basis van de in de NPR 9998 omschreven ontwerpregels een rekenvoorbeeld voor portaalconstructies uitgewerkt. In deze serie is eveneens een rekenvoorbeeld voor een houtskeltbouw (HSB) woning uitgewerkt, zie hiervoor SHR-rapport 180024-1 van oktober 2018. Beide rekenvoorbeelden zijn opgesteld op basis van de Ontwerp NPR 9998 die in juni 2017 is uitgegeven.

2 Uitgangspunten

Er is een nieuw te bouwen industriegebouw met portaalconstructie beschouwd. Een beschrijving van het gebouw en de constructie is opgenomen in figuur 1. Het gebouw bestaat uit vijf stramien van 5.400 mm. De totale afmeting van het gebouw is 10 x 27,0 m. Beoordeeld wordt of de portaalconstructie, te beschouwen voor gevolgklasse CC1B (zie NPR 9998, tabel 2.2), een aardbevingsniveau uitgedrukt in de referentie piek grondversnelling $a_g = 0,39$ g, zie de website ‘seismische krachten’ van NEN (http://seismischekrachten.nen.nl/webtool.php) ter plaatse van Wittewierum, kan weerstaan.

Figuur 1a: Plattegrond industriegebouw voorzien van portaalconstructies.
Figuur 1b: Overzichtstekening portaalconstructie ten behoeve van een industriegebouw.

Staalkwaliteit stiften 8 mm: assenstaal S235 ($f_{yb} = 235 \text{ N/mm}^2$, $f_{ub} = 360 \text{ N/mm}^2$), zie bijlage 8.
3 Bepalingsmethoden NPR 9998 – 4.3.3

Constructies kunnen op vier verschillende wijzen op aardbevingen worden ontworpen c.q. gecontroleerd.

Lineair elastische rekenmethoden
a) De “berekening volgens de zijdelingse belastingsmethode” voor gebouwen die voldoen aan de voorwaarden in NPR 9998 - 4.3.3.2:
 - De laagste eigenfrequentie \(T_1 \) in twee hoofdrichtingen zijn kleiner of gelijk aan \(T_1 \leq 4 \cdot T_C \) en \(T_1 \leq 2,0 \) s.
 - Het gebouw voldoet aan criteria ten aanzien van regelmatigheid (in plattegrond en) in hoogte, NPR 9998 – 4.2.3.3; zie hoofdstuk 4 van dit rapport voor de beoordeling van de in dit voorbeeld beschreven gebouw.
 Regelmatigheid in hoogte:
 o Stabiliserende elementen moeten doorlopen vanaf de fundering tot aan het dak
 o De stabiliserende elementen en de massa zijn constant verdeeld over de hoogte of nemen gelijkmatig af
 Indien niet wordt voldaan aan de regelmatigheidscriteria voor regelmatigheid in de plattegrond moet een ruimtelijk model worden opgesteld (zie NPR 9998 – tabel 4.1).

b) De “berekening volgens het spectrale modale respons spectrum”, ook voor gebouwen, die niet aan de voorwaarden in NPR 9998 - 4.3.3.2 voldoen.

Niet-lineaire rekenmethoden
Voor het bepalen van de respons worden gemiddelde waarden voor de materiaaleigenschappen gebruikt (controle uiteindelijk op basis van rekenwaarden).

c) Niet-lineaire statische (pushover) berekening
 Voor gebouwen, die voldoen aan de criteria ten aanzien van regelmatigheid in plattegrond en hoogte, zie hoofdstuk 4 van dit rapport voor de beoordeling van de in dit voorbeeld beschreven gebouw, kan worden volstaan met berekeningen in de twee hoofdrichtingen. Indien dit niet het geval is moet een ruimtelijk model worden gemaakt.

d) Niet-lineaire (dynamische) tijdsdomeinberekening

Opmerking: de fundering is buiten beschouwing gelaten. Conform de webtool seismische krachten van NEN (http://seismischekrachten.nen.nl/webtool.php), behorende bij NPR 9998, is er van uitgegaan dat het gegeven ontwerpsspectrum geldt op maaveldniveau = funderingsniveau.
4 Verkennende beoordeling van de constructie

In dit hoofdstuk wordt de tekst uit het hoofdstuk 4 van het eerder vermelde rekenvoorbeeld “SHR-rapport 18.0024-1 - Voorbeeldberekening houtskeletbouw (HSB) tijdens aardbevingen” nagenoeg volledig gekopieerd.

4.1 Beoordeling van de regulariteit van de plattegrond

De beoordeling wordt uitgevoerd volgens 4.2.3.2 van NPR 9998.

- de verdeling van de stijfheden en de massa moet in beide richtingen (bij benadering) symmetrisch zijn (2);
- de plattegrond heeft zo'n vorm dat er geen sprake is van relatief grote inhammen (compacte plattegrond) (3)
- de stijfheid van de vloerschijf is voldoende groot in vergelijking met de stijfheid van de verticale elementen (4)
- de verhouding λ tussen de grootste en de kleinste afmetingen van de plattegrond is niet groter dan 4 (5)
- de excentriciteit tussen het zwaartepunt van de stijfheden en het zwaartepunt van de massa moet kleiner zijn dan 0,3 maal de torsie straal (6)

Omdat de plattegrond van de constructie van de industriehal in beide richtingen geheel symmetrisch is, wordt aan (2) voldaan.

De plattegrond betreft een rechthoek. Er is daarom geen sprake van inhammen, aan (3) wordt voldaan.

Als verplaatsingen optreden evenwijdig in de richting van de portalen is de stijfheid van de dakschijf groot in vergelijking met de stijfheid van het portaal. Als verplaatsingen optreden haaks op de richting van de portalen dan is de stijfheid van de dakschijf van een gelijke orde als die van de windverbanden. Vooralsnog wordt aangenomen dat aan (4) is voldaan.

De lengte van het gebouw is gelijk aan $5 \times 5,4 = 27,0$ m. De diepte van het gebouw is 10,0 meter. Hieruit volgt dat $27,0 / 10,0 = 2,7 < 4$.

De stabiliserende elementen, de houten portalen, zijn per stramien in het hart van het massazwaartepunt geplaatst waardoor deze twee samenvallen in hetzelfde punt.

De afstand e tussen de stabiliserende elementen en het massazwaartepunt is nul. Er wordt aan voorwaarde (6) voldaan.
4.2 Beoordeling van regelmatigheid over de hoogte

De beoordeling wordt uitgevoerd volgens 4.2.3.3 van NPR 9998.

- de constructie-onderdelen die weerstand bieden tegen horizontale verplaatsingen, de stabiliserende onderdelen, zijn doorgaand van de fundering tot de bovenzijde van het gebouw (2)
- zowel de stijfheden en de massa’s zullen constant verdeeld zijn over de hoogte of zullen slechts geleidelijk afnemen (3)
- bij raamwerkconstructies mag de verhouding tussen de aanwezige capaciteit van het raamwerk en de benodigde capaciteit per bouwlaag niet disproportioneel verschillen (4)
- als de stabiliserende onderdelen niet continue zijn maar inspringen gelden aanvullende eisen (5)

De constructie van het industriegebouw loopt van de fundering door tot aan het platte dak, het niveau waar de hoogste en tevens enige concentratie van massa zich bevindt. Aan (2), (3) en (5) wordt voldaan.

In het industriegebouw is in de hoogte één portaal opgenomen. Er zijn geen verdiepingen met portaalconstructies met afwijkende stijfheden waardoor aan (4) wordt voldaan.

4.3 Beoordeling van de constructie

Op basis van de hiervoor uitgevoerde beoordeling van de regelmatigheid van de plattegrond en de regelmatigheid over de hoogte kan de constructie worden beoordeeld en kan een keuze uit verschillende modellen en analyse-wijzen worden gemaakt.

De constructie is zowel over de hoogte als met betrekking tot de plattegrond als regelmatig beoordeeld. Hieruit volgt dat volgens 4.2.3.1 van de NPR 9998 de beoordeling van de constructie bij aardbevingsbelasting mag zijn uitgevoerd met een 2D model en waarbij de aardbevingsbelasting middels een zijdelingse, statisch equivalente last wordt aangebracht. Voor de gedragsfactor q mag volgens tabel 4.1 van de NPR 9998 de referentiewaarde worden aangehouden.

Voor de te beoordelen industriegebouw met portaalconstructies wordt de in hoofdstuk 3 van dit rapport beschreven lineair elastische rekenmethode “berekening volgens de zijdelingse belastingsmethode” aangehouden.
5 Berekeningen

5.1 Statisch equivalent voor de dynamische aardbevingsbelasting

Algemeen geldt: kracht = massa * versnelling * dynamische vergrotingsfactor * “belastingsfactor” / reductiefactor.

In formulevorm: \[F = \frac{m \cdot a \cdot DAF}{q} \cdot \gamma_i \] (1)

In het geval van een aardbevingsberekening voor gebouwen in Groningen geldt:
\[m = \text{massa [kg]} \]
\[a = a_g \cdot S \quad \text{[m/s}^2\text{]} \quad \text{In dit rekenvoorbeeld } a_g \cdot S = 3,84 \text{ m/s}^2 \quad (= 0,39 g = \text{piek grondversnelling die volgens de webtool (http://seismischekrachten.nen.nl/webtool.php) van NEN voor Wittewierum moet worden aangehouden)}

\[\gamma_i \quad [-] \quad \text{belastingsfactor afhankelijk van de belangrijkheid van het gebouw conform NPR 9998 – tabel 2.2 (importantiefactoren voor primaire en secundaire seismische krachten). In dit rekenvoorbeeld betreft het een nieuw te bouwen industriegebouw in gevolgklasse CC1B (NEN-EN 1990) waarvoor geldt: } \gamma_i = 1,1 \text{. In de berekeningen wordt in formule (1) } a_g \cdot S \cdot \gamma_i = 3,84 \cdot 1,1 = 4,23 \text{ m/s}^2 \text{ betrokken.}\]

\[q [-] \quad \text{reductiefactor afhankelijk van de energie die in de constructie wordt gedissipeerd (“vernietigd”). Alle energie die in de constructie wordt gedissipeerd belast de constructie niet verder. Hierdoor worden de “pieken” die normaal gesproken bij een lineair elastisch gedrag zouden ontstaan afgezwakt. De factor } q \text{ is daarom ook sterk afhankelijk van het niet-lineaire gedrag van de constructie; bij houtconstructies heeft dit vooral betrekking op de vervormingscapaciteit in de verbindingen. Waarden voor de } q \text{-factor (ook wel gedragsfactor genoemd) kunnen worden ontleend aan NPR 9998 – tabel 8.3. Deze waarden mogen conform NPR 9998 – 3.2.2.2.3 voor toetsing aan Near Collapse (NC) met 1,33 worden vermenigvuldigd. Conform NPR 9998 – tabel 8.3 wordt voor het rekenvoorbeeld met portaalconstructie } q = 3,0 \text{ (effectief } 1,33 \times 3,0 = 4,0) \text{ aangehouden.}\]

\[DAF [-] \quad \text{Dynamic Amplification Factor. Dynamische vergrotingsfactor afhankelijk van de eigenfrequentie (eigen trillingstijd (T)) van de constructie. Indien de eigentrillingstijd in de buurt ligt van de maatgevende trillingstijd (T) van de aardbeving leidt dit tot opslingeren (hoge waarde voor de dynamische vergrotingsfactor). De grondcondities, die mogelijk voor extra opslingering van het gebouw zorgen, zijn verwerkt in het reponspectrum gegeven in de NPR 9998 webtool ‘seismische krachten’ van NEN. Er wordt in dit rekenvoorbeeld geen gebruik gemaakt van de locatiespecifieke methode voor het bepalen de invloeden op de dynamische vergrotingsfactor door de grondcondities.} \]
Voorbeeldberekening portaalconstructie tijdens aardbevingen

Rapportcode: 18.0024-2 Datum: 24 oktober 2018 Pagina: 10/38

Met behulp van de NPR 9998 webtool (http://seismischekrachten.nen.nl/webtool.php) uitgegeven door NEN is voor iedere locatie in Noordoost-Groningen de referentie piekgrondversnelling gegeven. In dit rapport is de situatie voor Wittewierum, uitgaande van een herhalingstijd van 2475 jaar voor de Primaire seismische elementen, aangehouden. Zie de afbeelding van de website ‘seismische krachten’ van NEN in figuur 2. De dynamische vergrotingsfactor wordt voor ductiele bouwconstructies, volgens 3.2.2.2.3 uit NPR 9998, als volgt gedefinieerd:

\[
S_d(T) = \gamma_i \cdot a_s S \left[1 + \frac{T}{T_B} \left(\frac{p}{q} - 1 \right) \right]
\]

(formule 3.8 uit NPR 9998)

\[
S_d(T) = \gamma_i \cdot a_s S \cdot \frac{p}{q}
\]

(formule 3.9 uit NPR 9998)

\[
S_d(T) = \gamma_i \cdot a_s S \cdot \frac{p}{q} \left[\frac{T_C}{T} \right]
\]

(formule 3.10 uit NPR 9998)

\[
S_d(T) = \gamma_i \cdot a_s S \cdot \frac{p}{q} \left[\frac{T_C \cdot T_D}{T^2} \right]
\]

(formule 3.11 uit NPR 9998)

Waar in is:

- \(a_s S\) is de waarde van de piekgrondversnelling op maaveldniveau (inclusief de bodemfactor), in m/s²
- \(\gamma_i\) is de importantiefactor
- \(a_s, S\) is de rekenwaarde van de piekgrondversnelling op maaveldniveau, in m/s²
- \(p\) is de relatie tussen de piekgrondversnelling en de plateauwaarde van het elastisch responspectrum
- \(T_B\) is de ondergrens van de periodes waarvoor de spectrale versnelling constant is, in s
- \(T_C\) is de bovengrens van de periodes waarvoor de spectrale versnelling constant is, in s
- \(T_D\) is de periode die het begin aanduidt van de constante verplaatsingsrespons van het spectrum, in s
- \(q\) is de gedragsfactor
- \(T\) is de trillingsperiode van een lineair systeem met één vrijheidsgraad in s
- \(S_d(T)\) is het responspectrum (ontwerpspectrum), in m/s²
Voorbeeldberekening portaalconstructie tijdens aardbevingen

Rapportcode: 18.0024-2
Datum: 24 oktober 2018
Pagina: 11/38

Figuur 2: Referentie piek grondversnelling \(\alpha_g \cdot S = 0.39g \) volgens de NPR 9998-webtool ‘seismische krachten’ voor Wittewierum, voor volledige uitvoer zie bijlage 2.
http://seismischekrachten.nen.nl/webtool.php

5.2 Maatgevende eigentrillingstijd (T)

NPR 9998 – 4.3.3.2.2 - verwijst voor het bepalen van de laagste (dominante) eigenfrequentie naar NEN-EN 1998-1 (Eurocode 8 deel 1) artikel 4.3.3.2.2. In dit artikel wordt een aantal methoden aangegeven waaronder de methode Rayleigh (strikt genomen geldig voor lineair elastisch constructiegeld). Zie bijlage 1 voor de achtergrond van methode Rayleigh.

In dit rekenvoorbeeld wordt voor het bepalen van de laagste eigenfrequentie de methode Rayleigh (gebaseerd op het uitgangspunt dat potentiële + kinetische energie = constant), weergegeven met formule (2), gebruikt (conform aanbeveling in NPR 9998 – hoofdstuk 8).

\[
f_e = \frac{1}{2\pi} \sqrt{\sum m_i \cdot g \cdot u_i} \quad [\text{sec}]
\]

\[
T_i = \frac{1}{f_e} \quad [\text{sec}]
\]

Conform in NPR 9998 – 4.3.3.2 voor de “zijdelingse belastingmethode” omschreven volgen de verplaatsingen \(u_i \) op elke verdieping \(i \) uit een analyse waarbij de op iedere verdieping werkende permanente verticale belasting \(m_i \cdot g \) horizontaal wordt aangebracht. Aangezien de eigenfrequentie(s) uitsluitend in het elastische traject worden gedefiniërd worden voor de vervormingen \(u_i \) de vervormingen in het elastische gebied genomen. Voor het bepalen van de elastische verplaatsing als gevolg van de verplaatsing van de verbindingsemiddelen wordt gebruik gemaakt van de waarden voor \(K_{scr} \) in tabel 7.1 uit EN 1995-1-1.
5.3 Maximale horizontale statische belasting

De afschuifkracht ter plaatse van de fundering F_b, oftewel de te verwachten maximale horizontale statische belasting, wordt conform NPR 9998 – 4.3.3.2.2 berekend met:

$$F_b = S_d(T) \cdot m_{tot} \cdot \lambda$$

(formule 4.5 uit NPR 9998)

$\lambda = 1.0$ voor gebouwen t/m twee verdiepingen (correctiefactor op de massa)

$S_d(T) =$ de dynamische vergrotingsfactor afhankelijk van de eigentrillingstijd T van de constructie.

$m_{tot} =$ totale massa in kg

Formule (4.5) uit NPR 9998 is, zie paragraaf 5.1, in principe gelijk aan formule (1).

De massa van het gebouw dient gerekend te worden als het gewicht van het gebouw boven de fundering. De afschuifkracht ter plaatse van de fundering F_b wordt als een equivalente (statische) kracht aangebracht. Deze kracht wordt over de hoogte van het gebouw verdeeld naar rato van de horizontale uitwijking van de massa’s op de verschillende hoogten; dit is weergegeven m.b.v. de volgende formule.

$$F_i = F_b \frac{u_i \cdot m_i}{\sum u_j \cdot m_j}$$

(formule 4.10 uit NPR 9998)

waarin u_i gelijk is aan de verplaatsing van de massa m_i op verdieping i en u_j gelijk is aan de verplaatsing van de massa m_j op verdieping j. De verplaatsingen worden berekend door de op de verdieping aanwezige massa als $m \cdot g$ horizontaal op deze verdieping aan te brengen (statische belastingen).
6 Rekenvoorbeeld industriegebouw met portaalconstructie

De hoofdafmetingen van het industriegebouw worden ontleend aan figuur 1 waarin de plattegrond en doorsnede is weergegeven. Ter vergelijking wordt het moment in de verbinding tussen de kolommen en dakliggers berekend als gevolg van de wind- en sneeuwbelasting.

6.1 Windbelasting

Ter vergelijking wordt een berekening op wind uitgevoerd.

NO-Groningen: Windgebied II, onbebouwd. Gebouwhoogte: 4 m. \(q_p(z) = 0.60 \) kN/m²

\[
A_{\text{zijgevel}} = 5.4 \cdot 4.0 = 21.6 \text{ m}^2 \\
A_{\text{dak}} = 5.4 \cdot 10.0 = 54.0 \text{m}^2
\]

Dan volgt voor winddruk op de zijgevel:

\[
F_{w,k,\text{druk}} = 21.6 \cdot (0.8 + 0.7) \cdot 0.60 = 19.44 \text{ kN}
\]

en windwrijving aan het dak:

\[
F_{w,k,\text{wrijving}} = 54.0 \cdot 0.04 \cdot 0.60 = 1.296 \text{ kN}
\]

De rekenwaarde van de windbelasting is:

\[
F_{w,d,\text{druk}} = F_{w,k,\text{druk}} \cdot K_{F_I} \cdot \gamma_Q = 19.44 \cdot 0.9 \cdot 1.5 = 26.244 \text{ kN} \\
F_{w,d,\text{wrijving}} = F_{w,k,\text{wrijving}} \cdot K_{F_I} \cdot \gamma_Q = 1.296 \cdot 0.9 \cdot 1.5 = 1.7496 \text{ kN}
\]

Deze kracht levert een kantelmoment op van:

- Winddruk op de zijgevel:
 \[
 M_{w,d,\text{druk}} = \frac{4.0}{2} \cdot 26.244 = 52.5 \text{ kNm}
 \]
- Windwrijving aan het dak:
 \[
 M_{w,d,\text{wrijving}} = 4.0 \cdot 1.7496 = 7.0 \text{ kNm}
 \]
- Kantelmoment totaal: \(M_{w,d} = 52.5 + 7.0 = 59.5 \text{ kNm} \)

Hieruit volgt een horizontale reactiekracht van:

\[
R_{d,\text{hor}} = \frac{26.244 + 1.7496}{2} = 14.0 \text{ kN per spanbeen}
\]

\[
\sum = 0 \text{, van de momenten om de knoop}
\]

\[
M_{d,\text{knoop}} = -\frac{26.244 \cdot 2 + 14.0 \cdot 4}{2} = -26.244 + 56.0 = 29.8 \text{ kNm}
\]
6.2 Sneeuwbelasting

Eigen gewicht

dakligger: \(0.08 \times 0.54 \times 5.0\)\(= 0.22\) kN/m\(^1\)
dak: \(5.4 \times 0.5\)\(+ 2.70\) kN/m\(^1\)
Totaal: \(G_k = 2.92\) kN/m\(^1\)

Sneeuwbelasting

\(\mu_k = 0.8\)
\(s_k = 0.7\)
\(q_k = \mu_k \cdot s_k = 0.8 \cdot 0.7 = 0.56\) kN/m\(^2\)
\(q_k = q_k \cdot b = 0.56 \cdot 5.4 = 3.024\) kN/m\(^1\)

\(q_d = G_k \cdot \gamma_s + q_k \cdot K_F \cdot \gamma_Q = 2.92 \cdot 1.08 + 3.024 \cdot 0.90 \cdot 1.50 = 7.24\) kN/m\(^1\)

Met behulp van (Leijten, 1988), zie bijlage 4 voor de volledige afleiding, is het moment op de knoop te bepalen:

\[K_{ser} = \frac{\rho_{se}^{1.5} \cdot d}{23} = \frac{420^{1.5} \cdot 8}{23} = 2.994\) N/mm\]

\[K_{R,ser,d} = 2 \cdot K_{ser} \cdot \left(n_1 \cdot r_1^2 + n_2 \cdot r_2^2 \right) = 2 \cdot 2.994 \cdot \left(31 \cdot 238^2 + 26 \cdot 198^2 \right) \cdot 10^{-6} = 16.618\) kNm / rad\]

\[K_r = \beta_r \cdot \frac{EI}{L} \quad \beta_r = K_r \cdot L \cdot \frac{16.618 \cdot 10^6 \cdot 10 \cdot 10^3}{11.500 \cdot 1.050 \cdot 10^9} = 13.76 \quad \alpha = \frac{EI_{ligger}}{EI_{kolom}} = \frac{1}{2}\]

\[M_{d, knoop} = \frac{q_d \cdot L^2}{8} \cdot \frac{1}{3/2 + \alpha \cdot \frac{H}{L} + \frac{3}{\beta_r}}\]

\[M_{d, knoop} = 7.24 \cdot 10^2 \cdot \frac{1}{3/2 + \frac{1}{2} \cdot \frac{4.0}{10.0} + \frac{3}{13.76}} = 90.5 \cdot 0.521 = 47.1\) kNm

Het moment ten gevolge van de combinatie ‘eigen gewicht + sneeuw’ \(M_d = 47.1\) kNm is maatgevend ten opzichte van de combinatie ‘eigen gewicht + windbelasting’ \(M_d = 29.8\) kNm). Het moment bepaald met behulp van Technosoft, inclusief belastinggenerator, is nagenoeg hetzelfde: 49.6 kNm.
6.3 De in rekening te brengen massa

Belastingen
- dakligger: \(0.08 \times 0.54 \times 5.0 \times 10.0 \) \(= 2.16 \) kN
- dak: \(10 \times 5.4 \times 0.5 \) \(= 27.0 \) kN
- helft van de gevelstijlen: \(2 \times 0.08 \times 0.54 \times 5.0 \times 4.0 \times 2 \times 1/2 \) \(= 1.73 \) kN
- twee halve gevels: \(2 \times 1/2 \times 4.0 \times 5.4 \times 0.5 \) \(= 10.8 \) kN
- Totaal: \(M'g \) \(= 41.7 \) kN

\(\text{(Sneeuwbelasting } \Psi_2 = 0.0 \,) \)

\(M = 41.700 \, \text{N} / 9.81 = 4.250 \, \text{kg per portaalconstructie} \)

6.4 Eigenfrequentie

Bepaal verplaatsingen

\(s_1 = s_{\text{buiging kolom}} + s_{\text{rotatieveer}} + s_{\text{buiging dakligger}} \)

Stijfheid kolom + ligger

\(I_{\text{kolom}} = \frac{1}{12} \cdot 160 \cdot 540^3 = 2,100 \cdot 10^9 \, \text{mm}^4 \)

\(I_{\text{ligger}} = \frac{1}{12} \cdot 80 \cdot 540^3 = 1,050 \cdot 10^9 \, \text{mm}^4 \)

Verplaatsing ten gevolge van buiging in de kolommen

Figuur 3: Verplaatsing ten gevolge van buiging in de kolommen.

\(F_R = \frac{F_1}{2} = \frac{41.7}{2} = 20.84 \) kN per dubbele gevelstijl (kolom)

\(s_{\text{buiging kolom}} = \frac{F \cdot l^3}{3EI} = \frac{20.84 \cdot 10^3 \cdot 4000^3}{3 \cdot 1.1 \cdot 11.500 \cdot 2.100 \cdot 10^9} = 16.7 \, \text{mm} \)
Verplaatsing ten gevolge van buiging in de dakligger

Figuur 4: Verplaatsing ten gevolge van buiging in de dakligger.

\[M_{\text{knoop}} = F_R \cdot h = 20.84 \cdot 40 = 83.4 \text{ kNm} \]
\[\varphi_A = \frac{M_{\text{knoop}} \cdot l}{6EI} = \frac{83.4 \cdot 10^6 \cdot 10000}{6 \cdot 1.1 \cdot 11500 \cdot 1.05 \cdot 10^7} = 0.0105 \text{ rad} \]
\[s_{\text{buiging, ligger}} = \varphi_A \cdot l = 0.0105 \cdot 4000 = 41.9 \text{ mm} \]

Verplaatsing ten gevolge van de rotatieveer in de knoop

Figuur 5: Verplaatsing ten gevolge van de rotatieveer in de knoop.

\[K_{\text{ser}} = \rho_m \frac{1.5 \cdot d}{23} = \frac{420 \cdot 1.5 \cdot 8}{23} = 2.994 \text{ N/mm} \]
\[K_{R,\text{ser,d}} = 2 \cdot K_{\text{ser}} \cdot \left(n_1 \cdot r_1^2 + n_2 \cdot r_2^2 \right) = 2 \cdot 2.994 \cdot \left(31.238^2 + 26.198^2 \right) \cdot 10^{-6} = 16.618 \text{ kNm / rad} \]
\[\varphi = \frac{M_{\text{knoop}}}{K_{R,\text{ser,d}}} = \frac{83.4 \cdot 10^6}{16.618 \cdot 10^6} = 5.017 \cdot 10^{-3} \text{ rad} \]
\[s_{\text{rotatieveer}} = \varphi \cdot l = 5.017 \cdot 10^{-3} \cdot 4000 = 20.1 \text{ mm} \]

\[s_1 = 16.7 + 41.9 + 20.1 = 78.7 \text{ mm} \]
De constructie is nu om te vormen naar een één-massa-veersysteem volgens figuur 6.

Figuur 6: Omvormen van de constructie naar een één-massa-veersysteem.

Bepaal veerstijfheid:
\[k_i = \frac{F_i}{s_i} = \frac{41,7 \cdot 10^3}{78,7} = 529,9 \text{ N/mm} = 529,915 \text{ N/m} \]

Bepaal eigenfrequentie volgens een één-massa-veersysteem:
\[m_i = \frac{F_i}{g} = \frac{41,7 \cdot 10^3}{9,81} = 4,250 \text{ kg} \]
\[f_c = \frac{1}{2\pi} \sqrt{\frac{k_i}{m_i}} = \frac{1}{2\pi} \sqrt{\frac{529,915}{4,250}} = 1,78 \text{ Hz} = 1,78 \frac{1}{\text{sec}} \]
\[T_i = \frac{1}{f_c} = \frac{1}{1,78} = 0,56 \text{ sec} \]
6.5 Aardbevingsbelasting

\[a_x S = 0.39 g \left(= 0.39 \cdot 9.81 = 3.84 \text{m/s}^2 \right) \]

tpv Wittewierum

\[p = 1.929 \text{ [ext{]}]} \]

\[T_p = 0.222 \text{ s} \]

\[T_c = 0.454 \text{ s} \]

\[T_D = 0.866 \text{ s} \]

Figuur 7: Elastisch responsspectrum, exclusief importantiefactor \(\gamma_I \).

Aangezien \(T_c \leq T \leq T_D \) volgt dat:

\[S_d(T) = \gamma_I \cdot a_x S \cdot \frac{p}{q} \cdot \frac{T_c}{T} = 1.1 \cdot 0.39 \cdot \frac{1.929}{4} \cdot \frac{0.454}{0.56} = 0.17 g = 1.65 \text{ m/s}^2 \]; zie NPR 9998 – 3.2.2.2.3 – formule (3.10).

Bepaal \(F_{base} \):

\[F_{base} = S_d(T) \cdot m_{tot} \cdot \lambda = 1.65 \cdot 4.250 \cdot 1.0 = 6.991 \text{ N} \]

Bepaal het moment op de verbinding ligger/kolom:

\[M_{d, knoop} = F_R \cdot l = \frac{6.991}{2} \cdot 4.0 \cdot 10^{-3} = 14.0 \text{ kNm} \]

Ter vergelijking, het moment op de knoop ten gevolge van windbelasting is:

\[M_{d, knoop, wind} = 29.8 \text{ kNm} \]
6.6 Controle van de verbindingsmiddelen in de knoop

Bepaal de kracht per snede:

\[F_{v,Ed} = M_{u,d} \cdot \frac{r_i}{n_1 \cdot r_1^2 + n_2 \cdot r_2^2} = 14,0 \cdot 10^6 \cdot \frac{238}{2 \cdot 231 \cdot 238^2 + 2 \cdot 26 \cdot 198^2} = 600 \text{ N} \]

Sterkte verbindingsmiddel:

\[F_{v,Rk} = 3,130 \text{ N}, \text{ zie bijlage 6}. \]

\[F_{v,Rd} = \frac{F_{v,Rk}}{\gamma_m} \cdot \frac{\kappa_{mod}}{\gamma_m} = \frac{3,130}{1,0} \cdot \frac{1,1}{1,0} = 3,443 \text{ N} \]

\[\frac{F_{v,Ed}}{F_{v,Rd}} = \frac{600}{3,443} = 0,17 \leq 1,0 \text{ voldoet} \]

Controle slankheid verbindingsmiddel volgens tabel 8.2 – NPR 9998:

\[f_{h,0,k} = 0,082 \cdot (1-0,01 \cdot d) \cdot \rho_k = 0,082 \cdot (1-0,01 \cdot 8) \cdot 385 = 29,0 \text{ N/mm}^2 \]

\[k_90 = 1,35 + 0,015 \cdot d = 1,35 + 0,015 \cdot 8 = 1,47 \]

\[f_{h,90,k} = \frac{f_{h,0,k}}{k_90 \cdot \sin^2 \alpha + \cos^2 \alpha} = \frac{f_{h,0,k}}{k_90 \cdot \sin^2 90 + \cos^2 90} = \frac{29,0}{1,47 \cdot 1 + 0} = 19,8 \text{ N/mm}^2 \]

Staalkwaliteit stiften φ 8 mm: assenstaal S235 (\(f_{yb} = 235 \text{ N/mm}^2, f_{ub} = 360 \text{ N/mm}^2 \)), zie bijlage 8.

\[t \geq 1,4 \cdot 8 \cdot \frac{f_y}{f_h} \geq 1,4 \cdot 8 \cdot \frac{235}{19,8} \geq 39 \text{ mm} \text{ slankheid voldoet} \]

Uit laboratoriumtesten (Fokkens 2017) blijkt dat de vloeispanning (\(f_{yb} \)) en de breuksterkte (\(f_{ub} \)) zeer veel hoger kunnen zijn dan wordt opgegeven door de fabrikant. Een hogere sterkte zorgt voor extra veiligheid met betrekking tot bezwijken. Echter een hogere vloeispanning kan er voor zorgen dat de plastische scharnieren in het verbindingsmiddel niet volledig worden ontwikkeld met daardoor een lagere energiedissipatie: de q-factor is daardoor lager dan aangenomen!

De hogere vloeispanning heeft vooral invloed op de benodigde houtdikte voor het volledig ontwikkelen van plastische scharnieren. Daarom wordt deze controle eveneens uitgevoerd voor de hogere vloeispanning (\(f_{yb} = 540 \text{ N/mm}^2 \)) volgens Fokkens:

\[t \geq 1,4 \cdot 8 \cdot \frac{f_y}{f_h} \geq 1,4 \cdot 8 \cdot \frac{540}{19,8} \geq 59 \text{ mm} \text{ slankheid voldoet} \]

Bij de gekozen houtdikte kan worden aangenomen dat de plasticiteit in het verbindingsmiddel zich volledig ontwikkeld: er kan q = 3,0 worden aangehouden.
6.7 Wapenen van de verbinding en oversterkte van de liggers

Zoals aangegeven in tabel 8.3 – NPR 9998 dient een portaal met gebouwde verbindingen gewapend te worden. De wapening dient te voorkomen dat spanningen loodrecht op de vezel, veroorzaakt door de drukbelasting uit de boutverbindingen, het hout in de lengterichting doen splijten. De hiervoor benodigde wapening is aangegeven in figuur 8.

Figuur 8: Wapenen van de verbinding tegen trekspanning loodrecht op de vezel.

Gedurende de aardbevingsbelasting worden de liggers belast op buiging: bros bezwijkgedrag. De liggers dienen daarom te worden voorzien van een oversterkte ($\gamma_{kd} = 1,5$), met als doel het plastische bezwijkgedrag in de knoop te alle tijde maatgevend te laten zijn, zodat het brosse bezwijkgedrag op buiging niet op zal treden.

Controle buigend moment in de ligger (inclusief oversterkte):

$$M_{d,knoop} = 14,0 \text{ kNm}, \text{zie paragraaf 6.5 'Aardbevingsbelasting'}.\]

De sterkte van de ligger volgt uit $f_{m,g,d} = \frac{f_{m,g,k} \cdot k_{mod}}{\gamma_m \cdot \gamma_M \cdot \gamma_{kd}}$ met $\gamma_m = 1,0$ (NPR 9998 - 8.1) en $k_{mod} = 1,1$ (NPR 9998 - 8.1), $\gamma_M = 1,0$ (NPR 9998 - 4.4.2.2) en $\gamma_{kd} = 1,5$ (NPR 9998 - tabel 8.3)

$$f_{m,g,d} = \frac{24,0}{1,0} \cdot \frac{1,1}{1,0 \cdot 1,5} = 17,6 \text{ N/mm}^2 \geq \sigma_d = \frac{M_d}{W} = \frac{14,0 \cdot 10^6}{\frac{1}{6} \cdot 80 \cdot 540^2} = 3,6 \text{ N/mm}^2 \text{ voldoet}$$
6.8 Aardbevingsbelasting versus windbelasting

De sterkte van de verbinding is 3.443 N terwijl de belasting, als gevolg van de aardbeving, slechts 600 N is. Dat betekent, dat er een oversterkte van \(\frac{3.443}{600} = 5.76 \) aanwezig is. Deze oversterkte is zo groot dat enkel elastisch gedrag valt te verwachten gedurende de aardbevingsbelasting. Met andere woorden: ductiel bezwijken hoeft in dit geval niet geëist te worden.

Het moment op de knoop als gevolg van de aardbevingsbelasting is laag (14,0 kNm) ten opzichte van het moment als gevolg van de combinatie 'eigen gewicht + sneeuw' (47,1 kNm). De aardbevingsbelasting is niet maatgevend. De volgende redenen liggen hieraan ten grondslag:

1. Het eigen gewicht van de constructie ten opzichte van het volume is zeer laag. Als gevolg zijn de krachten "kracht = massa x versnelling" ook laag.
2. De ductiliteit van de constructie is "hoog". (Ductility Class High "DCH", q = 3.0).
3. De fundamentele trillingsperiode (\(T_1 \)) van het portaal is hoog ten opzichte van de korte trillingsperiode van de aardbevingsbelasting. Van opslingering is nauwelijks sprake.
7 Conclusie

In onderliggend document is een voorbeeldberekening gemaakt met aardbevingsbelastingen voor een industriegebouw. De belastingen en uitgangspunten volgens NPR 9998 zijn aangehouden.

Van een portaalconstructie uitgevoerd in gelamineerd hout, verbonden met een dubbel uitgevoerd stiftpatroon in ringvorm, is een berekening ten gevolge van windbelasting, sneeuwbelasting en aardbevingsbelasting gemaakt. Hierbij is gebleken dat de belastingen veroorzaakt door de sneeuwbelasting maatgevend zijn ten opzichte van de aardbevingsbelasting. De rekenwaarde voor het moment in de verbinding tussen de kolommen en de dakligger (“de knoop”) is voor de aardbeving $M_{d,knoop} = 14,0 \ kNm$ te vergelijken met $M_{d,knoop} = 47,1 \ kNm$ ten gevolge van de combinatie “eigen gewicht + sneeuwbelasting”. Het is duidelijk dat de belastingen voortkomend uit de aardbeving verre van maatgevend zijn. De volgende redenen kunnen hiervoor worden gegeven:

1. Het eigen gewicht van de constructie ten opzichte van het volume is zeer laag. Als gevolg zijn de krachten “kracht = massa x versnelling” ook laag.
2. De ductiliteit van de constructie is “hoog” (Ductility Class High “DCH”, $q = 3,0$).
3. De fundamentele trillingsperiode (T_1) van het portaal is hoog ten opzichte van de korte trillingsperiode van de aardbevingsbelasting. Van opslinging is nauwelijks sprake.

Er is een “ground peak acceleration” (PGA) aangehouden van $0,39 \ g = 0,39 \cdot 9,81 = 3,84 \ m/s^2$, zie de webtool 'seismische krachten' van NEN ter plaatse van Wittewierum.

Mits zorgvuldig ontworpen is uit voorgaande constructieberekeningen gebleken dat het zeer goed mogelijk is industriegebouwen met portaalconstructies in gelamineerd hout uit te voeren in een aardbevingsgebied. De hierboven genoemde redenen liggen hieraan ten grondslag. De veronderstelde ductilitiet is te garanderen als de verbinding in de “knoop” wordt versterkt, bijvoorbeeld door middel van voldraads houtschroeven zoals aangegeven in figuur 8.
Voorbeeldberekening portaalconstructie tijdens aardbevingen

Gebruikte symbolen

- $a_{g,ed}$: rekenwaarde van de piekgrondversnelling, in g
- $a_{g}S$: is de waarde van de piekgrondversnelling op maaiveldniveau (inclusief de bodemfactor), in g
- F_b: seismische afschuifkracht ter plaatse van de fundering
- m_{tot}: totale massa van het gebouw boven de fundering, in kg
- p: is de relatie tussen de piekgrondversnelling en de plateauwaarde van het elastisch responssspectrum
- q: is de gedragsfactor
- $S_q(T)$: is het responssspectrum (ontwerpspectrum), in m/s²
- T: is de trillingsperiode van een lineair systeem met één vrijheidsgraad in s
- T_B: is de ondergrens van de periodes waarvoor de spectrale versnelling constant is, in s
- T_C: is de bovengrens van de periodes waarvoor de spectrale versnelling constant is, in s
- T_D: is de periode die het begin aanduidt van de constante verplaatsingsrespons van het spectrum, in s
- T_i: fundamentele trillingsperiode van een gebouw
- λ: correctiefactor voor de massa $\lambda = 0,85$ als $T_i \leq 2 \cdot T_C$ als het gebouw meer dan twee verdiepingen telt; anders $\lambda = 1,0$
- γ_f: importantiefactor (belastingfactor)
- γ_m: partiële factor voor de materiaaleigenschappen
- η_m: partiële factor voor de weerstand van het element

Literatuur

Voorbeeldberekening portaalconstructie tijdens aardbevingen

Rapportcode: 18.0024-2 Datum: 24 oktober 2018 Pagina: 24/38

Ontwerp NPR 9998: juni 2017 Beoordeling van de constructieve veiligheid van een gebouw bij nieuwbouw, verbouw en afkeuren – Grondslagen voor aardbevingsbelastingen: geïnduceerde aardbevingen

Timber Engineering STEP lecture C16 ‘Moment resisting connections’ P. Racher

NPR 9998 webtool seismische krachten: http://seismischekrachten.nen.nl/webtool.php
Bijlage 1: Methode Rayleigh

\[E_{pot} = m \cdot g \cdot \Delta \quad ; \quad E_{kin} = 0 \]

\[E_{pot} = m \cdot g \cdot \Delta \quad ; \quad E_{kin} = 0 \]

\[v = \omega \cdot \Delta \]

\[\frac{1}{2} m \cdot g \cdot \Delta = \frac{1}{2} \cdot m \cdot \omega^2 \cdot \Delta^2 \]

\[\omega^2 = \frac{m \cdot g \cdot \Delta}{m \cdot \Delta^2} \]

bij meerdere massa's:

\[\omega = \sqrt{\sum_i m_i \cdot g_i \cdot \Delta_i} \quad \text{[rad/sec]} \]

\[T = \frac{1}{f}, \quad \omega = 2 \cdot \pi \cdot f = \frac{2 \cdot \pi}{T} \]

\[f = \frac{\omega}{2 \cdot \pi} \]

\[f = \frac{1}{2 \cdot \pi} \cdot \sqrt{\sum_i m_i \cdot \Delta_i^2} \quad \text{[1/sec]} \]

Eenheden:

\[E_{pot} = m \cdot g \cdot \Delta = kg \cdot \frac{m}{s^2} \cdot m = \frac{kg \cdot m^2}{s^2} = \text{Joule} \]

\[E_{kin} = \frac{1}{2} m \cdot v^2 = kg \cdot \left(\frac{m}{s} \right)^2 = \frac{kg \cdot m^2}{s^2} = \text{Joule} \]
Bijlage 2: NPR 9998 webtool seismische krachten: Wittewierum

Responsspectrum data gedownload van de Webtool NPR 9998

Datum van download: 2017-07-31 14:27
Dataset: 2017-06-22_GMMv4_Surf
Herhalingstijd [jaar]: 2475
Richting: Horizontaal

Locatie
RD (x, y) [m]: 245696, 589845
GPS (lat, ing) [°]: 53.287405, 6.747205

Ontw. NPR 9998:2017 parameters
\(a_g \) S [g] 0,3918
\(p [-] \) 1,929
\(T_B [s] \) 0,222
\(T_C [s] \) 0,454
\(T_D [s] \) 0,666

UHS-data
\(T [s] \) \(S_a [g] \)
0.01 0.3918
0.025 0.4144
0.05 0.4454
0.075 0.4802
0.1 0.5409
0.125 0.5991
0.15 0.6552
0.175 0.6978
0.2 0.7193
0.25 0.7679
0.3 0.7698
0.4 0.7464
0.5 0.6805
0.6 0.569
0.7 0.4994
0.85 0.3823
1 0.2738
1.5 0.1324
2 0.0756
2.5 0.0349
3 0.0209
4 0.0096
5 0.0065
Bijlage 3: Afleiding moment op de knoop van een portaal: momentvast

\[M = \frac{1}{8} \cdot q \cdot L^2 \]

\[\phi_1 = \frac{q \cdot L^3}{24 \cdot EI} \]

\[\Delta_{arm} = \phi_1 \cdot H = \frac{q \cdot L^3 \cdot H}{24 \cdot EI} \]

\[M = R \cdot H \]

\[\phi_2 = \frac{M \cdot L}{3 \cdot EI} + \frac{M \cdot L}{6 \cdot EI} = \frac{M \cdot L}{2 \cdot EI} \]

\[\Delta_{reactie} = \phi_2 \cdot H + w_{hoogte} = \frac{M \cdot L \cdot H}{2 \cdot EI} + \frac{R \cdot H^3}{3 \cdot EI} \]
\[\Delta_{actie} = \Delta_{reactie} \]
\[
\frac{q \cdot L^3 \cdot H}{24 \cdot EI} = \frac{M \cdot L \cdot H}{2 \cdot EI} + \frac{R \cdot H^3}{3 \cdot EI} \]
\[
\frac{q \cdot L^3 \cdot H}{24} = \frac{R \cdot L \cdot H^2}{2} + \frac{R \cdot H^3}{3} \]
\[
\frac{q \cdot L^3 \cdot H}{24} = R \cdot \left(\frac{3L \cdot H^2 + 2 \cdot H^3}{6} \right) \]
\[
R = \frac{q \cdot L^3 \cdot H}{4 \cdot (3L \cdot H^2 + 2 \cdot H^3)} = \frac{q \cdot L^3}{4 \cdot (3L \cdot H + 2 \cdot H^2)} \]
\[
M = R \cdot H = \frac{q \cdot H \cdot L^3}{4 \cdot (3L \cdot H + 2 \cdot H^2)} = q \cdot \frac{L^2}{12} \cdot \frac{3 \cdot L}{3L + 2 \cdot H} \]
\[
M = q \cdot \frac{L^2}{12} \cdot \frac{3 \cdot L}{2 \cdot H} = k = \frac{3 \cdot L}{2 \cdot H} \]
\[
M = q \cdot \frac{L^2}{12} \cdot \frac{k}{1 + k} \]

Zie Jellema, Hogere Bouwkunde – 9 Utiliteitsbouw
Bijlage 4: Afleiding moment op de knoop van een portaal: rotatieveer

\[
M = \frac{1}{8} q \cdot L^2
\]

\[
\phi_1 = \frac{q \cdot L^2}{24 \cdot EI}
\]

\[
\Delta_{\text{amb}} = \phi_1 \cdot H = \frac{q \cdot L^2 \cdot H}{24 \cdot EI}
\]

\[
M = R \cdot H
\]

\[
\phi_2 = \frac{M \cdot L}{3 \cdot EI} + \frac{M \cdot L}{6 \cdot EI} + \phi_{\text{static}} = \frac{M \cdot L}{2 \cdot EI} + \frac{M}{k}
\]

\[
\Delta_{\text{reactie}} = \phi_2 \cdot H + w_{\text{loading}} = \left(\frac{M \cdot L}{2 \cdot EI} + \frac{M}{k}\right) \cdot H + \frac{R \cdot H^3}{3 \cdot EI}
\]
\[\Delta_{actie} = \Delta_{reactie} \]
\[q \cdot L^3 \cdot H = \left(\frac{M \cdot L}{2 \cdot EI} + \frac{M}{k} \right) \cdot H + \frac{R \cdot H^3}{3 \cdot EI} \]
\[q \cdot L^3 \cdot H = \frac{R \cdot L \cdot H^2}{2 \cdot EI} + \frac{R \cdot H^2}{k} + \frac{R \cdot H^3}{3 \cdot EI} \]
\[q \cdot L^3 \cdot H = R \left(\frac{L \cdot H^2}{2 \cdot EI} + \frac{H^2}{k} + \frac{H^3}{3 \cdot EI} \right) \]
\[q \cdot L^3 \cdot H = R \left(\frac{3 \cdot k \cdot L \cdot H^2}{3 \cdot k \cdot 2 \cdot EI} + \frac{6 \cdot EI \cdot H^2}{6 \cdot EI \cdot k} + \frac{2 \cdot k \cdot H^3}{2 \cdot k \cdot 3 \cdot EI} \right) \]
\[q \cdot L^3 \cdot H = R \left(\frac{3 \cdot k \cdot L \cdot H^2 + 6 \cdot EI \cdot H^2 + 2 \cdot k \cdot H^3}{6 \cdot EI \cdot k} \right) \]
\[R = \frac{q \cdot L^2 \cdot H}{24 \cdot EI} \cdot \frac{6 \cdot EI \cdot k}{3 \cdot k \cdot L \cdot H^2 + 6 \cdot EI \cdot H^2 + 2 \cdot k \cdot H^3} \]
\[M = R \cdot H = \frac{q \cdot L^2}{24 \cdot EI} \cdot \frac{6 \cdot EI \cdot k \cdot H^2 \cdot L}{3 \cdot k \cdot L \cdot H^2 + 6 \cdot EI \cdot H^2 + 2 \cdot k \cdot H^3} \]
\[M = \frac{q \cdot L^2}{24 \cdot EI} \cdot \frac{6 \cdot EI \cdot k \cdot H^2 \cdot L}{2 \cdot EI \cdot k \cdot H^2 \cdot L} \]
\[M = \frac{q \cdot L^2}{24 \cdot EI} \cdot \frac{3}{2} \cdot \frac{3 \cdot EI + H}{k \cdot L} \]
\[M = \frac{q \cdot L^2}{8} \cdot \frac{1}{2} \cdot \frac{3 \cdot EI + H}{k \cdot L} \]
\[M = \frac{q \cdot L^2}{8} \cdot \frac{1}{2} \cdot \frac{3 \cdot EI + H}{k \cdot L} \]
\[\alpha = \frac{EI_{regel}}{EI_{kolum}} \quad \beta = \frac{k \cdot L}{EI} \]

Bijlage 5: Afleiding rotatiestijfheid voor een stiftpatroon met straal r

In deze bijlage wordt de rotatieveerstijfheid bepaald van een verbinding tussen twee houten delen door middel van stiften in de vorm van een cirkel met straal r. De stijfheid wordt bepaald door de stijfheid van één individueel verbindingsmiddel uitgedrukt door ‘K_{ser}’, zie de kracht-verplaatsingsgrafiek hieronder.

![Diagram](image)

Uit deze individuele stijfheid kan de rotatiestijfheid van een rond stiftpatroon als volgt worden afgeleid:

$$M_{inv} = r \cdot F \quad M_{inv} = k_c \cdot \phi$$

$$\phi = \tan^{-1} \frac{\Delta}{r} \approx \frac{\Delta}{r}$$

$$M_{ainv} = M_{inv}$$

$$r \cdot F = k_c \cdot \phi$$

$$r \cdot F = k_c \cdot \frac{\Delta}{r}$$

$$k_c = F \cdot \frac{r^2}{\Delta}$$

$$k_c = F \cdot r^2 \cdot \frac{K_{ser}}{F}$$

$$k_c = r^2 \cdot K_{ser} \quad [\text{Nmm} / \text{rad}], \text{voor één verbindingsmiddel.}$$

$$k_c = n \cdot r^2 \cdot K_{ser} \quad [\text{Nmm} / \text{rad}], \text{voor aantal = n verbindingsmiddelen.}$$
Bijlage 6: Afschuifsterkte stiftverbinding 8 mm assenstaal

VERBINDINGEN MET STALEN STIFTVORMIGE VERBINDINGSMIDDELEN
Volgens: NEN-EN 1995-1-1, EC5, Artikel 8
Versie: VerbWinEC5 2013-02, Rel.130701

UITVOER-GEGEvens van Stift:
- diameter = 8.0 mm¹
- lengte = 240.0 mm¹, excl. afschuining
- f_u;Rk = 355 N/mm², BlankAssenStaal
- M_y;Rk = 23.73 * 10³ Nmm = 0.3 * f_u;Rk * d² 2.6

MODIFICATIE-FACTOREN:
- k_mod = 0.90, gamma_M = 1.30
- Klimaatklasse 1 = Relatieve vochtigheid: <65%
- Belastingsduur: Klasse IV (kort)

BEREKENING SNEDEKRACHT:
- Dubbel-snedig, Opbouw = H.H.H
- Afmetingen: 80.0 + 80.0 + 80.0

<table>
<thead>
<tr>
<th>materiaal</th>
<th>ρho_k [kg/m³]</th>
<th>alfa [°]</th>
<th>f_h;j;k [N/mm²]</th>
<th>t_i [mm¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = GL24h</td>
<td>380</td>
<td>90.0</td>
<td>19.50</td>
<td>80.0</td>
</tr>
<tr>
<td>2 = GL24h</td>
<td>380</td>
<td>90.0</td>
<td>19.50</td>
<td>80.0</td>
</tr>
<tr>
<td>3 = GL24h</td>
<td>380</td>
<td>90.0</td>
<td>19.50</td>
<td>80.0</td>
</tr>
</tbody>
</table>

beta = f_emb;rep;2 / f_emb;rep;1/3 = 1.00

SNEDEKRACHT, exclusief koordwerking (-K):
- F_v;Rk = volgens artikel 8.2.2
 F_v;Rk = 12481 N (8.7g) F_v;Rk = 4674 N (8.7h)
 = 6240 " (8.7l-K) = 3130 " (8.7k-K)

KOORDWERKING: Artikel 12.6.7
- F_{ax};Rk = N.V.T.
 Geen koordwerking
- F_{ax};Rk = 0 N, met 1/4 F_{ax};Rk = 0 N

SNEDEKRACHT, inclusief koordwerking:
- Stift => Aandeel 1/4 F_{ax};Rk max. 0% van F_{ax};Rk(Form-K)
 F_v;Rk = volgens artikel 8.2.2
 F_v;Rk = 12481 N (8.7g) F_v;Rk = 4674 N (8.7j-K)
 = 6240 " (8.7h) = 3130 " (8.7k-K)

REKENWAARDE SNEDEKRACHT, inclusief koordwerking:
- F_v;Rk = 3130 N
 F_{v};Rd = n_ef * (k_mod * F_v;Rk / gamma_M)
 = n_ef * 1.00 * (0.30 * 3130 / 1.30)
 = n_ef * 1.00 * 2167
 = n_ef * 2167 N per Snede

n_ef = (a₀/13d)^1/4*(n^0.9/n) (8.5.1.1(4), Form.8.34

EIND, RAND, TUSSEN-AFSTANDEN: Artikel 8.6, Tabel 8.5
- a_3t > 7 * d_nom = 56 a_3c > 3 * d_nom = 24
- a_4t > 4 * d_nom = 32 a_4c > 3 * d_nom = 24
- a_1 > 5 * d_nom = 40 a_2 > 3 * d_nom = 24

Voor rechthoekig patroon!
Afstand afhankelijk van vezelhoek!

AANVULLENDE CONTROLE SPLIJTEN: Artikel 8.1.4
- Trekcomponent loodrecht vezel => F_{v};Ed < F_{90};Rd
 - F_{v};Ed = Maximale rekenwaarde van de dwarskracht tpv. verbinding
 - F_{90};Rd = Rekenwaarde van de splijtsterkte = k_mod * F_{90};Rk / g_M
 - F_{90};Rk = 14 * b * w * sqrt (h_e / (1 - h_e/h))
 - w = 1.0 (geen hechtplaat), h_e = belaste randafstand.

n_ef = (a₀/13d)^1/4*(n^0.9/n) (8.5.1.1(4), Form.8.34

EIND, RAND, TUSSEN-AFSTANDEN: Artikel 8.6, Tabel 8.5
- a_3t > 7 * d_nom = 56 a_3c > 3 * d_nom = 24
- a_4t > 4 * d_nom = 32 a_4c > 3 * d_nom = 24
- a_1 > 5 * d_nom = 40 a_2 > 3 * d_nom = 24

Voor rechthoekig patroon!
Afstand afhankelijk van vezelhoek!

AANVULLENDE CONTROLE SPLIJTEN: Artikel 8.1.4
- Trekcomponent loodrecht vezel => F_{v};Ed < F_{90};Rd
 - F_{v};Ed = Maximale rekenwaarde van de dwarskracht tpv. verbinding
 - F_{90};Rd = Rekenwaarde van de splijtsterkte = k_mod * F_{90};Rk / g_M
 - F_{90};Rk = 14 * b * w * sqrt (h_e / (1 - h_e/h))
 - w = 1.0 (geen hechtplaat), h_e = belaste randafstand.
\(b = \) dikte element , \(h = \) hoogte houten element.

AANVULLENDE CONTROLE AFSCHUIVING: Bijlage.A

\[
\begin{align*}
F_{bs;Rk} & = \frac{1}{1.5} \cdot A_{net;t} \cdot f_{t;0;k} \\
\text{max} & = \frac{1}{0.7} \cdot A_{net;v} \cdot f_{v;k} \\
A_{net;t} & = \text{netto dwarsdoorsnede loodrecht vezelrichting.} \\
& = S(L_{net;v} * t_1) \quad (\text{Form.A2+A4}) \\
A_{net;v} & = \text{netto afschuifoppervlak evenwijdig vezelrichting.} \\
& = S(L_{net;v} * t_1) \quad (\text{Form.A3+A5+A6,A7}) \\
f_{t;0;k} & = \text{karakteristieke treksterkte houten element.} \\
f_{v;k} & = \text{karakteristieke afschuifsterkte houten element.}
\end{align*}
\]
Bijlage 7: Controle portaal ten gevolge van wind- en sneeuwbelasting

<table>
<thead>
<tr>
<th>Hoogte</th>
<th>4000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breedte</td>
<td>10000 mm</td>
</tr>
<tr>
<td>Hoogte ligger</td>
<td>540 mm</td>
</tr>
<tr>
<td>Breedte ligger</td>
<td>90 mm</td>
</tr>
<tr>
<td>D</td>
<td>8 mm</td>
</tr>
<tr>
<td>r1</td>
<td>238 mm</td>
</tr>
<tr>
<td>r2</td>
<td>31 staks</td>
</tr>
<tr>
<td>r3</td>
<td>198 mm</td>
</tr>
<tr>
<td>r4</td>
<td>26 staks</td>
</tr>
<tr>
<td>rw</td>
<td>420 kg/m</td>
</tr>
<tr>
<td>Ke</td>
<td>2994 N/mm</td>
</tr>
</tbody>
</table>

\[K_{nud} = 18.018 \text{ kNm}, \quad K_{nut} = 11.078 \text{ N/mm} \]
Bijlage 8: Documentatie stiften 8 mm assenstaal (S235) Rothoblaas STA

STA
Smooth dowel
Bright zircoplated carbon steel

CE MARKING
Cylindrical metal fastener with CE marking according to EN14592

STEEL
S355 steel grade to provide higher shear strength to the standard sizes used in structural design (Ø7/6 and Ø8)

GEOMETRY
Tapered end for an easier insertion of the fastener into the predrilled timber element. Available in 1,8m long version

SPECIAL VERSION
Available upon request in high bond steel and geometry designed to avoid pull-out when used in seismic areas
CALCULATION ACCURACY
CE marking guarantees usage suitability. The designer can always be certain to perform calculations based on the correct parameters, according to the reference Standards (Eurocode or others).

STEEL-TO-TIMBER
Ideal for being used with ALL brackets in realizing hidden joints. When used with wood screws it meets the fire safety requirements and provides a rewarding aesthetic appearance.

PRODUCT RANGE
8.0mm and 12.0mm diameters are available with S235 steel grade, 16.0mm and 20.0mm diameters are available with S355 steel grade. Available in 1.0m long pieces to be cut onsite according to the worksite needs. Available upon request in high bond steel and geometry designed to avoid pull-out when used in seismic areas.
<table>
<thead>
<tr>
<th>d (mm)</th>
<th>code</th>
<th>L (mm)</th>
<th>steel grade</th>
<th>pcs/box</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>STA66B</td>
<td>60</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA70B</td>
<td>70</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA80B</td>
<td>80</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA90B</td>
<td>90</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA100B</td>
<td>100</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA110B</td>
<td>110</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA120B</td>
<td>120</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA130B</td>
<td>130</td>
<td>S235</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>STA140B</td>
<td>140</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA150B</td>
<td>150</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA160B</td>
<td>160</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA170B</td>
<td>170</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA180B</td>
<td>180</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA200B</td>
<td>200</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA220B</td>
<td>220</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA240B</td>
<td>240</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA260B</td>
<td>260</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA280B</td>
<td>280</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA300B</td>
<td>300</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA320B</td>
<td>320</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA340B</td>
<td>340</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA360B</td>
<td>360</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA380B</td>
<td>380</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA400B</td>
<td>400</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>STA1640B</td>
<td>1640</td>
<td>S235</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>STA1680B</td>
<td>1680</td>
<td>S235</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>STA1720B</td>
<td>1720</td>
<td>S235</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>STA1760B</td>
<td>1760</td>
<td>S235</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>STA1800B</td>
<td>1800</td>
<td>S235</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>STA2000B</td>
<td>2000</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA2200B</td>
<td>2200</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA2400B</td>
<td>2400</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA2600B</td>
<td>2600</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA2800B</td>
<td>2800</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA3000B</td>
<td>3000</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA3200B</td>
<td>3200</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA3400B</td>
<td>3400</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA3600B</td>
<td>3600</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA3800B</td>
<td>3800</td>
<td>S235</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>STA4000B</td>
<td>4000</td>
<td>S235</td>
<td>100</td>
</tr>
</tbody>
</table>

Available upon request: high bond steel and shaped to avoid pullout when used in seismic areas (e.g. STA15,200).
GEOMETRY AND MECHANICAL PROPERTIES

INSTALLATION - MINIMUM DISTANCES FOR DOWELS LOADED IN SHEAR

NOTES

- Minimum distances according to EN 1995-1:2014
- Minimum distances valid both for timber-to-timber and for steel-to-timber joints